summaryrefslogtreecommitdiff
path: root/OSCAD/LPCSim/report/simulationReport.tex
blob: 2e06242f27048e5ef4f6735a1dd65129f47da3b3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
\documentclass[a4paper,10pt]{report}
\pagestyle{plain}
\usepackage{graphicx}
\usepackage{caption}
\usepackage{algorithmic}
% Title Page
\title{Half-Wave Rectifier}
\author{Generated by SMCSim}

\begin{document}
\maketitle
\hrule\vspace{5mm}
\begin{center} {\bf Simulation of ckt/HWRectifierFilter.ckt} \end{center}
\hrule\vspace{5mm}

{\bf Circuit Diagram:} \\
\vspace{2mm}
\hrule\vspace{5mm}

{\bf NetList:} \\
{\it * Half-Wave Rectifier} \\
V1 1 0 sine (5 50) \\
D1 1 2 mymodel (1e-8 0.026) \\
R1 2 0 10000 \\
C1 2 0 10e-3 \\
.tran 0 100 0.5 \\
.plot v(1) v(2) \\
.end 
\vspace{2mm}
\hrule\vspace{5mm}

{\bf System of Equations representing the electrical circuit:}
\vspace{2mm}
\begin{equation}
     i_{V_1} + D_{1f}(v_1,v_2) = 0 
\end{equation}
\begin{equation}
     (R_1)v_2 + (C_1)\frac{dv_2}{dt} + -D_{1f}(v_1,v_2) = 0 
\end{equation}
\begin{equation}
     v_1 = V_1
\end{equation}
\vspace{2mm}
$$ D_{nf}(v_a,v_b)=Is_n(1-e^{(v_a-v_b)/vt_n})$$
 where $Is_n$=reverse saturation current and $vt_n$=threshold voltage of diode $n$\\
\hrule\vspace{5mm}

{\bf Matrix form:}\\
The system of equations $\mathbf{A}\mathbf{x}+\mathbf{D}_f(\mathbf{\widehat{x}})+\mathbf{C}(d\mathbf{x}/dt)=b$ (Symbolically)\\
Where $\mathbf{A}$, $\mathbf{D}_f$ and $\mathbf{C}$ represent matrices corresponding to linear,
  nonlinear and time dependent electrical elements respectively.
  $\mathbf{b}$ represents the vector corresponding to sources.

\begin{equation}
\mathbf{A}=  
\left[ 
\begin{array}{ccc} 
0 &0  &1  \\ 
0 &\widehat{R}_1 &0  \\ 
1 &0  &0  
\end{array}
\right]
\end{equation} 
\begin{equation}
\mathbf{b}=  
\left[ 
\begin{array}{c} 
0  \\ 
0   \\ 
V_1  
\end{array}
\right]
\end{equation} 
\begin{equation}
\mathbf{D}_f=  
\left[ 
\begin{array}{c} 
D_{1f}  \\ 
-D_{1f}   \\ 
0  
\end{array}
\right]
\end{equation} 
\begin{equation}
\mathbf{C}=  
\left[ 
\begin{array}{ccc} 
0 &0  &0  \\ 
0 &C_1 &0  \\ 
0 &0  &0  
\end{array}
\right]
\end{equation} 
\begin{equation}
\mathbf{x}=  
\left[ 
\begin{array}{c} 
v_1   \\ 
v_2    \\ 
i_{V_1}  
\end{array}
\right]
\end{equation} 
\begin{equation}
\mathbf{\widehat{x}}=  
\left[ 
\begin{array}{c} 
(v_1,v_2)     
\end{array}
\right]
\end{equation} 
Note that the matrix contains $\widehat{R}$ entries (corresponding to resistors) whose values are equal to 1/$R$\\
\hrule\vspace{2mm}
The number of equations are $3$ \\
Unknowns: \\
  Node potentials: $2$ Current Variables: $1$ \\
\hrule\vspace{5mm}

{\bf Operating Point (DC) Analysis: } \\
{\it All capacitors are open circuited and inductors are short circuited.} 
\vspace{2mm}

{\bf System of Equations representing the electrical circuit:}
\begin{equation}
     i_{V_1} + D_{1f}(v_1,v_2) = 0 
\end{equation}
\begin{equation}
     (R_1)v_2 + -D_{1f}(v_1,v_2) = 0 
\end{equation}
\begin{equation}
     v_1 = V_1
\end{equation}
\vspace{2mm}
$$ D_{nf}(v_a,v_b)=Is_n(1-e^{(v_a-v_b)/vt_n})$$
 where $Is_n$=reverse saturation current and $vt_n$=threshold voltage of diode $n$\\
\hrule\vspace{5mm}

{\bf Application of Newton-Raphson method: }\\
\vspace{2mm}
{\it Nonliner models: }\\   
See linearized model for diode $D_1$ in diode\_D1.eps
\begin{figure}[h]
\centering
\includegraphics{diode_D1.eps}
\caption{linearization of diode $D_1$}
\end{figure}
\vspace{2mm}

{\bf System of Equations representing the electrical circuit:}\\
\begin{equation}
     (R_{D_1})v_1 + (-R_{D_1})v_2 + i_{V_1} = -i_{D_1} 
\end{equation}
\begin{equation}
    (R_{D_1})v_1 + (R_{D_1}+R_1)v_2 = i_{D_1} 
\end{equation}
\begin{equation}
     v_1 = V_1
\end{equation}
\hrule\vspace{5mm}

{\bf Transient Analysis:} \\
\hrule\vspace{5mm}

{\bf Results:} \\
\begin{figure}[h]
\centering
\includegraphics[scale=0.5]{output.eps}
\caption{plot}
\end{figure}


\end{document}