\documentclass[a4paper,10pt]{report} \pagestyle{plain} \usepackage{graphicx} \usepackage{caption} \usepackage{algorithmic} % Title Page \title{Half-Wave Rectifier} \author{Generated by SMCSim} \begin{document} \maketitle \hrule\vspace{5mm} \begin{center} {\bf Simulation of ckt/HWRectifierFilter.ckt} \end{center} \hrule\vspace{5mm} {\bf Circuit Diagram:} \\ \vspace{2mm} \hrule\vspace{5mm} {\bf NetList:} \\ {\it * Half-Wave Rectifier} \\ V1 1 0 sine (5 50) \\ D1 1 2 mymodel (1e-8 0.026) \\ R1 2 0 10000 \\ C1 2 0 10e-3 \\ .tran 0 100 0.5 \\ .plot v(1) v(2) \\ .end \vspace{2mm} \hrule\vspace{5mm} {\bf System of Equations representing the electrical circuit:} \vspace{2mm} \begin{equation} i_{V_1} + D_{1f}(v_1,v_2) = 0 \end{equation} \begin{equation} (R_1)v_2 + (C_1)\frac{dv_2}{dt} + -D_{1f}(v_1,v_2) = 0 \end{equation} \begin{equation} v_1 = V_1 \end{equation} \vspace{2mm} $$ D_{nf}(v_a,v_b)=Is_n(1-e^{(v_a-v_b)/vt_n})$$ where $Is_n$=reverse saturation current and $vt_n$=threshold voltage of diode $n$\\ \hrule\vspace{5mm} {\bf Matrix form:}\\ The system of equations $\mathbf{A}\mathbf{x}+\mathbf{D}_f(\mathbf{\widehat{x}})+\mathbf{C}(d\mathbf{x}/dt)=b$ (Symbolically)\\ Where $\mathbf{A}$, $\mathbf{D}_f$ and $\mathbf{C}$ represent matrices corresponding to linear, nonlinear and time dependent electrical elements respectively. $\mathbf{b}$ represents the vector corresponding to sources. \begin{equation} \mathbf{A}= \left[ \begin{array}{ccc} 0 &0 &1 \\ 0 &\widehat{R}_1 &0 \\ 1 &0 &0 \end{array} \right] \end{equation} \begin{equation} \mathbf{b}= \left[ \begin{array}{c} 0 \\ 0 \\ V_1 \end{array} \right] \end{equation} \begin{equation} \mathbf{D}_f= \left[ \begin{array}{c} D_{1f} \\ -D_{1f} \\ 0 \end{array} \right] \end{equation} \begin{equation} \mathbf{C}= \left[ \begin{array}{ccc} 0 &0 &0 \\ 0 &C_1 &0 \\ 0 &0 &0 \end{array} \right] \end{equation} \begin{equation} \mathbf{x}= \left[ \begin{array}{c} v_1 \\ v_2 \\ i_{V_1} \end{array} \right] \end{equation} \begin{equation} \mathbf{\widehat{x}}= \left[ \begin{array}{c} (v_1,v_2) \end{array} \right] \end{equation} Note that the matrix contains $\widehat{R}$ entries (corresponding to resistors) whose values are equal to 1/$R$\\ \hrule\vspace{2mm} The number of equations are $3$ \\ Unknowns: \\ Node potentials: $2$ Current Variables: $1$ \\ \hrule\vspace{5mm} {\bf Operating Point (DC) Analysis: } \\ {\it All capacitors are open circuited and inductors are short circuited.} \vspace{2mm} {\bf System of Equations representing the electrical circuit:} \begin{equation} i_{V_1} + D_{1f}(v_1,v_2) = 0 \end{equation} \begin{equation} (R_1)v_2 + -D_{1f}(v_1,v_2) = 0 \end{equation} \begin{equation} v_1 = V_1 \end{equation} \vspace{2mm} $$ D_{nf}(v_a,v_b)=Is_n(1-e^{(v_a-v_b)/vt_n})$$ where $Is_n$=reverse saturation current and $vt_n$=threshold voltage of diode $n$\\ \hrule\vspace{5mm} {\bf Application of Newton-Raphson method: }\\ \vspace{2mm} {\it Nonliner models: }\\ See linearized model for diode $D_1$ in diode\_D1.eps \begin{figure}[h] \centering \includegraphics{diode_D1.eps} \caption{linearization of diode $D_1$} \end{figure} \vspace{2mm} {\bf System of Equations representing the electrical circuit:}\\ \begin{equation} (R_{D_1})v_1 + (-R_{D_1})v_2 + i_{V_1} = -i_{D_1} \end{equation} \begin{equation} (R_{D_1})v_1 + (R_{D_1}+R_1)v_2 = i_{D_1} \end{equation} \begin{equation} v_1 = V_1 \end{equation} \hrule\vspace{5mm} {\bf Transient Analysis:} \\ \hrule\vspace{5mm} {\bf Results:} \\ \begin{figure}[h] \centering \includegraphics[scale=0.5]{output.eps} \caption{plot} \end{figure} \end{document}