1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
|
\documentclass{article}
\usepackage{graphicx}
\usepackage[landscape]{geometry}
\usepackage[pdftex]{color}
\usepackage{url}
\usepackage{multicol}
\usepackage{amsmath}
\usepackage{amsfonts}
\newcommand{\ex}{\color{blue}}
\pagestyle{empty}
\advance\topmargin-.9in
\advance\textheight2in
\advance\textwidth3.0in
\advance\oddsidemargin-1.45in
\advance\evensidemargin-1.45in
\parindent0pt
\parskip2pt
\newcommand{\hr}{\centerline{\rule{3.5in}{1pt}}}
\newcommand{\skipin}{\hspace*{12pt}}
\usepackage{color}
\definecolor{darkgreen}{rgb}{0,0.5,0}
\usepackage{listings}
\lstset{language=Python,
basicstyle=\ttfamily\bfseries,
commentstyle=\color{red}\itshape,
stringstyle=\color{darkgreen},
showstringspaces=false,
keywordstyle=\color{blue}\bfseries}
\begin{document}
\begin{multicols*}{3}
\begin{center}
\textbf{Python for Scientific Computing}\\
\textbf{Quick Reference}\\
FOSSEE -- Dec 1, 2010\\
\end{center}
\vspace{-2ex}
%*********************************************
\hr\textbf{Starting up}
To start \lstinline|ipython| with \lstinline|pylab|:\\
\lstinline| $ ipython -pylab| %$
To exit: \lstinline|^D| (Ctrl-D)
%*********************************************
\hr\textbf{Plotting}
Creating a linear array:\\
{\ex \lstinline| x = linspace(0, 2*pi, 50)|}
Plotting two variables:\\
{\ex \lstinline| plot(x, sin(x))|}
Plotting two lists of equal length x, y:\\
{\ex \lstinline| plot(x, y)|}
Plots with colors:\\
{\ex \lstinline| plot(x, sin(x), 'b')|} gives a blue line
Line style and markers:\\
{\ex \lstinline| plot(x, sin(x), '--')|} gives a dashed line\\
{\ex \lstinline|'.'|} -- a point marker, {\ex \lstinline|'o'|} -- a circle marker
Labels:\\
{\ex \lstinline| xlabel('x')|} and {\ex \lstinline|ylabel('sin(x)')|}
Title (\lstinline|pylab| accepts \TeX~in any text expression):\\
{\ex \lstinline| title(r'$\sigma$ vs. $\sin(\sigma)$')|}
Legend:\\
Use standard placement:\\
{\ex \lstinline| legend('sin(x)', loc=center)|}\\
Or explicitly specify location:\\
{\ex \lstinline| legend(['sin(x)'], loc=(.8,.1))|}
Annotate:\\
{\ex \lstinline| legend('annotation string', xy=(1.5, 1))|}
Saving figures:\\
{\ex \lstinline| savefig('sinusoids.png')|}
Miscellaneous:\\
{\ex \lstinline| clf()|} to clear the plot area\\
{\ex \lstinline| close()|} to close the figure
%*********************************************
\textbf{Other plots}
Pie Charts:\\
{\ex \lstinline| pie(science.values(), labels=science.keys())|},
where {\ex \lstinline|science|} is a dictionary.
%*********************************************
\hr\textbf{Saving and Running scripts}
{\ex \lstinline| %hist|} returns history of commands used. \\
To save a set of lines, say 14-18, 20, 22, to \lstinline|sample.py| \\
{\ex \lstinline| %save sample.py 14-18 20 22|}\\
To run \lstinline|sample.py| \\
{\ex \lstinline| %run -i sample.py|}
%*********************************************
\hr\textbf{Reading from files}
\lstinline|filename.txt| is a file with float data.
Using a for loop: (reading line by line)
\vspace{-8pt}
\begin{lstlisting}
for line in open('filename.txt'):
# some processing
\end{lstlisting}
\vspace{-8pt}
Using loadtxt: (reading all the data at once)\\
{\ex \lstinline|X = loadtxt('filename.txt')|} \\
X is an array with all the data from \lstinline|filename.txt|\\
{\ex \lstinline|X = loadtxt('filename.txt', delimiter=';')|} \\
when ';' delmits the columns of data
%*********************************************
\hr\textbf{Statistical operations}
{\ex \lstinline|mean|, \lstinline|median|, \lstinline|std|}
%*********************************************
\hr\textbf{Array Creation}
{\ex \lstinline|C = array([[11,12,13], [21,22,23], [31,32,33]])|}\\
{\ex \lstinline|C.shape|} shape--- rows \& cols\\
{\ex \lstinline|C.dtype|} data type\\
{\ex \lstinline|B = ones_like(C)|} array of ones; same shape, dtype as C\\
\skipin similarly \lstinline|zeros_like, empty_like| \\
{\ex \lstinline|A = ones((3,2))|} array of ones of shape (3,2)\\
\skipin similarly \lstinline|zeros, empty|\\
{\ex \lstinline|I = identity(3)|} identity matrix of size 3x3
%*********************************************
\hr\textbf{Accessing \& Changing elements}
{\ex \lstinline|C[1, 2]|} gets third element of second row\\
\skipin \textbf{Note:} Indexing starts from 0. \\
{\ex \lstinline|C[1]|} gets the second row \\
{\ex \lstinline|C[1,:]|} same as above (`:' implies all columns)\\
{\ex \lstinline|C[:,1]|} gets the second column (`:' implies all rows)\\
{\ex \lstinline|C[0:2,:]|} or {\ex \lstinline|C[:2,:]|} gets $1^{st}, 2^{nd}$ rows; all cols\\
{\ex \lstinline|C[1:3,:]|} or {\ex \lstinline|C[1:,:]|} gets $2^{nd}, 3^{rd}$
rows; all cols\\
{\ex \lstinline|C[0:3:2,:]|} or {\ex \lstinline|C[::2,:]|} gets $1^{st}, 3^{rd}$
rows; all cols
%*********************************************
\hr\textbf{Matrix Operations}
For a Matrix A and B of equal shapes:\\
{\ex \lstinline|A.T|} transpose\\
{\ex \lstinline|sum(A)|} sum of all elements\\
{\ex \lstinline|A+B|} addition\\
{\ex \lstinline|A*B|} element wise product\\
{\ex \lstinline|dot(A, B)|} Matrix multiplication\\
{\ex \lstinline|inv(A)|} inverse, {\ex \lstinline|det(A)|} determinant\\
{\ex \lstinline|eig(A)|} eigen values and vectors\\
{\ex \lstinline|norm(A)|} norm\\
{\ex \lstinline|svd(A)|} singular value decomposition
%*********************************************
\hr\textbf{Solving Linear Equations}
{\ex \lstinline|A = array([[3,2,-1], [2,-2,4], [-1, 0.5, -1]])|}\\
\skipin coefficient array\\
{\ex \lstinline|b = array([1, -2, 0])|} constant array\\
{\ex \lstinline|x = solve(A, b)|} the required solution
Checking the solution:\\
{\ex \lstinline|Ax = dot(A,x)|} matrix multiplication of A and x\\
{\ex \lstinline|allclose(Ax, b)|} check the closeness of Ax, b
%*********************************************
\hr\textbf{Roots of Polynomials}
{\ex \lstinline|coeffs = [1, 6, 13]|} coefficients in descending order\\
{\ex \lstinline|roots(coeffs)|} returns complex roots of the polynomial
%*********************************************
\hr\textbf{Roots of non-linear equations}
{\ex \lstinline|from scipy.optimize import fsolve|}\\
\skipin \lstinline|fsolve| is not in \lstinline|pylab|\\
\skipin we import from \lstinline|scipy.optimize| \\
We wish to find the roots of $f(x)=sin(x)+cos(x)^2$
\vspace{-8pt}
\begin{lstlisting}
def f(x):
return sin(x)+cos(x)**2
\end{lstlisting}
\vspace{-8pt}
{\ex \lstinline|fsolve(f, 0)|} \\
\skipin arguments are function name and initial estimate
%*********************************************
\hr\textbf{ODE}
To solve the ODE below:\\
$\frac{dy}{dt} = ky(L-y)$, L = 25000, k = 0.00003, y(0) = 250\\
\vspace{-8pt}
\begin{lstlisting}
def f(y, t):
k, L = 0.00003, 25000
return k*y*(L-y)
\end{lstlisting}
\vspace{-8pt}
{\ex \lstinline|t = linspace(0, 12, 60)|} time over which to solve ODE\\
{\ex \lstinline|y0 = 250|} initial conditions\\
{\ex \lstinline|from scipy.integrate import odeint|}\\
{\ex \lstinline|y = odeint(f, y0, t)|}
\hr\textbf{FFT}
{\ex \lstinline|t = linspace(0, 2*pi, 500)|}\\
{\ex \lstinline|y = sin(4*pi*t)|} a sinusoidal signal\\
{\ex \lstinline|f = fft(y)|}\\
{\ex \lstinline|freq = fftfreq(500, t[1] - t[0])|}\\
{\ex \lstinline|plot(freq[:250], abs(f)[:250])|}\\
\end{multicols*}
\end{document}
|