diff options
author | Madhusudan.C.S | 2009-10-27 12:50:19 +0530 |
---|---|---|
committer | Madhusudan.C.S | 2009-10-27 12:50:19 +0530 |
commit | 8ad47866c20cf995f7deed834be9bb5c04b734b5 (patch) | |
tree | a696fd85bc404f27a3486f59315eec1fd1bbf8e7 /day1/session3.tex | |
parent | 5d8b9aae33b39a885e9e64f2d43e422b9188fe5e (diff) | |
download | workshops-8ad47866c20cf995f7deed834be9bb5c04b734b5.tar.gz workshops-8ad47866c20cf995f7deed834be9bb5c04b734b5.tar.bz2 workshops-8ad47866c20cf995f7deed834be9bb5c04b734b5.zip |
Reworked on Session 3 day 1 slides.
Changed problem statement. Solved the problem. Included pie charts.
Diffstat (limited to 'day1/session3.tex')
-rw-r--r-- | day1/session3.tex | 171 |
1 files changed, 85 insertions, 86 deletions
diff --git a/day1/session3.tex b/day1/session3.tex index 1af46cd..fb399bb 100644 --- a/day1/session3.tex +++ b/day1/session3.tex @@ -127,13 +127,19 @@ %% \end{frame} \begin{frame} + \frametitle{More on data processing} + \begin{block}{} + What do we do if we want to draw Pie charts for the data in a huge data file? + \end{block} +\end{frame} + + +\begin{frame} \frametitle{Statistical Analysis and Parsing} Read the data supplied in \emph{sslc1.txt} and obtain the following statistics: \begin{itemize} - \item Average total marks scored in each region - \item Subject wise average score of each region - \item \alert{??Subject wise average score for all regions combined??} - \item Find the subject wise standard deviation of scores for each region + \item Draw a pie chart representing the number of students who scored more than 90\% in Science per region. + \item Draw a pie chart representing the number of students who scored more than 90\% per subject(All regions combined). \end{itemize} \end{frame} @@ -142,7 +148,6 @@ Machinery Required - \begin{itemize} \item File reading and parsing - \item NumPy arrays - sum by rows and sum by coloumns \item Dictionaries \end{itemize} \end{frame} @@ -183,128 +188,115 @@ for record in open('sslc1.txt'): \begin{frame}[fragile] \frametitle{Dictionary - Building parsed data} \begin{itemize} - \item Let the parsed data be stored in dictionary \typ{data} - \item \begin{lstlisting} -data = {} # is an empty dictionary + \item Let the parsed data be stored in list of dictionaries. + \item d = \{\} is an empty dictionary + \end{itemize} +\end{frame} + +\begin{frame}[fragile] + \frametitle{Dictionary - Building parsed data} +\begin{lstlisting} +ninety_percents = [{}, {}, {}, {}, {}] \end{lstlisting} +\end{frame} + +\begin{frame}[fragile] + \frametitle{Dictionary - Building parsed data} + \begin{itemize} \item Index of a dictionary is called a \emph{key} - \item \emph{Keys} of \typ{data} are strings - region codes - \item Value of a \emph{key} can be any Python object + \item \emph{Keys} of these dictionaries are strings - region codes \end{itemize} \end{frame} \begin{frame}[fragile] - \frametitle{Dictionary - Building parsed data...} + \frametitle{Dictionary - Building parsed data \ldots} \begin{itemize} - \item In this problem let the value of a \emph{key} be another dictionary. + \item Value of a \emph{key} can be any legal Python value + \item In this problem let the value of a \emph{key} be another an integer \item This dictionary contains: - \begin{itemize} - \item 'marks': A \emph{List} of \emph{Lists} containing all marks - \item 'total': A \emph{List} of total marks of each student - \item 'P': Number of passes - \item 'F': Number of failures - \item 'W': Number of withdrawls - \end{itemize} \end{itemize} +'region code': Number of students who scored more than 90\% in this region for this subject \end{frame} \begin{frame}[fragile] - \frametitle{Dictionary - Building parsed data \ldots} - \small + \frametitle{Building parsed data \ldots} \begin{lstlisting} -data = {} +from pylab import * + +ninety_percents = [{}, {}, {}, {}, {}] + for record in open('sslc1.txt'): + record = record.strip() fields = record.split(';') - if fields[0] not in data: - data[fields[0]] = { - 'marks': [], - 'total': [], - 'P': 0, - 'F': 0, - 'W': 0 - } + + region_code = fields[0].strip() \end{lstlisting} \end{frame} \begin{frame}[fragile] - \frametitle{Dictionary - Building parsed data \ldots} + \frametitle{Building parsed data \ldots} + \small \begin{lstlisting} -marks = [] -for field in fields[3:8]: - score_str = field.strip() - score = 0 if score_str == 'AA' - or score_str == 'AAA' - or score_str == '' - else int(score_str) - marks.append(score) +for i, field in enumerate(fields[3:8]): -data[fields[0]]['marks'].append(marks) - \end{lstlisting} -\end{frame} + if region_code not in ninety_percents[i]: + ninety_percents[i][region_code] = 0 -\begin{frame}[fragile] - \frametitle{Dictionary - Building parsed data \ldots} - \begin{lstlisting} -total = 0 if score_str == 'AA' - or score_str == 'AAA' - or score_str == '' - else int(fields[8]) -data[fields[0]]['total'].append(total) + score_str = field.strip() + + score = 0 if score_str == 'AA' else + int(score_str) + if score > 90: + ninety_percents[i][region_code] += 1 \end{lstlisting} \end{frame} \begin{frame}[fragile] - \frametitle{Dictionary - Building parsed data \ldots} + \frametitle{Consolidating data} \begin{lstlisting} -pfw_key = fields[9] - or fields[10] - or 'F' -data[fields[0]][pfw_key] += 1 +subj_total = [] +for subject in ninety_percents: + subj_total.append(sum( + subject.values())) \end{lstlisting} \end{frame} \begin{frame}[fragile] - \frametitle{NumPy arrays} - \centerline{\alert{But I lied!?!?!?}} -\end{frame} - -\begin{frame}[fragile] - \frametitle{Calculations} + \frametitle{Pie charts} + \small \begin{lstlisting} -for k in data: - data[k]['marks'] = array( - data[k]['marks']) - data[k]['total'] = array( - data[k]['total']) +figure(1) +pie(ninety_percents[4].values(), + labels=ninety_percents[1].keys()) +title('Students scoring 90% and above + in science by region') +savefig('/tmp/science.png') \end{lstlisting} +\begin{columns} + \column{5.25\textwidth} + \hspace*{1.1in} +\includegraphics[height=2in, interpolate=true]{data/science} + \column{0.8\textwidth} +\end{columns} \end{frame} \begin{frame}[fragile] - \frametitle{Calculations} - \small + \frametitle{Pie charts} \begin{lstlisting} - data[k]['avg'] = average( - data[k]['total']) - marks = data[k]['marks'] - sub_avg = average(marks, axis=1) - sub_std = sqrt(sum(square( - sub_avg[:,newaxis] - marks), axis=0) / - len(marks)) - data[k]['sub_avg'] = sub_avg - data[k]['sub_std'] = sub_std +figure(2) +pie(subj_total, labels=['English', + 'Hindi', 'Maths', 'Science', + 'Social']) +title('Students scoring more than + 90% by subject(All regions + combined).') +savefig('/tmp/all_regions.png') \end{lstlisting} \end{frame} \begin{frame}[fragile] - \frametitle{New Concepts} - \begin{itemize} - \item Dictionaries - \item Slicing lists - \item New type of conditional - \item NumPy arrays - \item Slicing NumPy arrays - \item NumPy array functions - square, average, sqrt - \end{itemize} + \frametitle{Pie charts} + \includegraphics[height=3in, interpolate=true]{data/all_regions} \end{frame} \begin{frame}[fragile] @@ -427,4 +419,11 @@ In []: plot(L, Tline) \end{lstlisting} \end{frame} +\begin{frame}[fragile] + \frametitle{What did we learn?} + \begin{itemize} + \item Dictionaries + \item Drawing pie charts + \end{itemize} +\end{frame} \end{document} |