diff options
author | Shantanu | 2009-11-19 11:04:11 +0530 |
---|---|---|
committer | Shantanu | 2009-11-19 11:04:11 +0530 |
commit | d30f5ceedf841e49b51d13b3975225d93717da30 (patch) | |
tree | c2b869bee31cf480a9e69ace5843efdc73dd9070 /day1 | |
parent | 0bb3878cf0c287a230e7a3af1e06d4d780c2eecb (diff) | |
download | workshops-more-scipy-d30f5ceedf841e49b51d13b3975225d93717da30.tar.gz workshops-more-scipy-d30f5ceedf841e49b51d13b3975225d93717da30.tar.bz2 workshops-more-scipy-d30f5ceedf841e49b51d13b3975225d93717da30.zip |
Modified cheat sheet of session 4 day 1.
Diffstat (limited to 'day1')
-rwxr-xr-x | day1/cheatsheet4.tex | 34 |
1 files changed, 26 insertions, 8 deletions
diff --git a/day1/cheatsheet4.tex b/day1/cheatsheet4.tex index 3f67f2d..d7e8327 100755 --- a/day1/cheatsheet4.tex +++ b/day1/cheatsheet4.tex @@ -52,7 +52,7 @@ array([[ 1, 1, 2], In []: C[1,2] Out[]: 1 \end{lstlisting} -Two indexes seperated by ',' specifies row, column. So \kwrd{C[1,2]} gets third element of second row(indices starts from 0). +Two indexes seperated by \typ{','} specifies [row, column]. So \kwrd{C[1,2]} gets third element of second row(indices starts from 0). \newpage \begin{lstlisting} In []: C[1] @@ -121,6 +121,7 @@ array([[ 0, 0], \end{lstlisting} \typ{'1:'} => Start from second row, till last row\\ \typ{':2'} => Start from first column, till and excluding third column. +\newpage \subsection{Striding} Often apart from submatrix, one needs to get some mechanism to jump a step. For example, how can we have all alternate rows of a Matrix. \\ Following method will return Matrix with alternate rows. @@ -146,8 +147,7 @@ Out[]: array([[ 1, 2], [-1, 7]]) \end{lstlisting} - -\Section{Matrix Operations} +\section{Matrix Operations} For a Matrix A and B of equal shapes. \begin{lstlisting} In []: A.T # Transpose @@ -158,7 +158,6 @@ In []: dot(A,b) #Matrix multiplication In []: inv(A) # Inverse In []: det(A) # Determinant \end{lstlisting} - Eigen Values and Eigen Vectors \begin{lstlisting} In []: eig(A) #Eigen Values and Vectors @@ -172,14 +171,33 @@ In []: eigvals(A) #Eigen Values %% \begin{lstlisting} %% In []: svd(A) %% \end{lstlisting} -Least Square Fit Line +\section{Least Square Fit Line} +\begin{lstlisting} +L = [] +T = [] +for line in open('pendulum.txt'): + point = line.split() + L.append(float(point[0])) + T.append(float(point[1])) +Tsq = [] +for time in T: + Tsq.append(time*time) +plot(L, Tsq, '.') +\end{lstlisting} +This is exact curve we get from L Vs Tsq from data.This relation among L and Tsq is not of straight line. For getting Least Square Fit line, we have to solve the relations:\\ +$L=m*Tsq+c$ (something similar to $y=m*x+c$)\\ +For present scenario, we have L and corresponding Tsq values. For finding m and c at given points we use \typ{lstlq} function provided by pylab. It returns the least-squares solution to an equation. \\ +For finding Least Square Fit line for this particular data we have to do following steps:\\ +\typ{In []: A = array([L, ones\_like(L)])}\\ +A is 2x(Length of array L) array. \begin{lstlisting} -In []: A = array([L, ones_like(L)]) -In []: A = A.T +In []: A = A.T #now A.shape = (Length of array L)x2 In []: result = lstsq(A,TSq) In []: coef = result[0] In []: Tline = coef[0]*L + coef[1] -In []: plot(L, Tline) \end{lstlisting} +\typ{coef[0]} is array with all $m$ values, and \typ{coef[1]} contains $c$.\\ +To get the final plot.\\ +\typ{In []: plot(L, Tline)} \end{document} |