1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
|
/* autogenerated from "macros/Electrical/PNP.sci" */
function PNP() {
PNP.prototype.define = function PNP() {
ModelName = "PNP";
PrametersValue = [[50],[0.1],[0],[0.02],[1.200e-10],[5.000e-09],[1.000e-12],[4.000e-13],[5.000e-13],[0.8],[0.4],[0.8],[0.333],[1.000e-15],[1.000e-15],[0.02585],[40]];
ParametersName = [["Bf"],["Br"],["Is"],["Vak"],["Tauf"],["Taur"],["Ccs"],["Cje"],["Cjc"],["Phie"],["Me"],["Phic"],["Mc"],["Gbc"],["Gbe"],["Vt"],["EMinMax"]];
model = scicos_model();
Typein = [];
Typeout = [];
MI = [];
MO = [];
P = [[100,90,-2,0],[0,50,2,0],[100,10,-2,0]];
PortName = [["C"],["B"],["E"]];
for (i=1;i<=size(P,"r");i+=1) {
if (P[i-1][3-1]==1) {
Typein = [[Typein],["E"]];
MI = [[MI],[PortName[i-1]]];
}
if (P[i-1][3-1]==2) {
Typein = [[Typein],["I"]];
MI = [[MI],[PortName[i-1]]];
}
if (P[i-1][3-1]==-1) {
Typeout = [[Typeout],["E"]];
MO = [[MO],[PortName[i-1]]];
}
if (P[i-1][3-1]==-2) {
Typeout = [[Typeout],["I"]];
MO = [[MO],[PortName[i-1]]];
}
}
model = scicos_model();
mo = modelica();
model.sim = ModelName;
mo.inputs = MI;
mo.outputs = MO;
model.rpar = PrametersValue;
mo.parameters = list(ParametersName,PrametersValue,zeros(ParametersName));
exprs = [["50"],["0.1"],["1.e-16"],["0.02"],["0.12e-9"],["5e-9"],["1e-12"],["0.4e-12"],["0.5e-12"],["0.8"],["0.4"],["0.8"],["0.333"],["1e-15"],["1e-15"],["0.02585"],["40"]];
gr_i = [];
model.blocktype = "c";
model.dep_ut = [false,true];
mo.model = ModelName;
model.equations = mo;
model.in1 = ones(size(MI,"*"),1);
model.out = ones(size(MO,"*"),1);
this.x = standard_define([2,2],model,exprs,list(gr_i,0));
this.x.graphics.in_implicit = Typein;
this.x.graphics.out_implicit = Typeout;
}
PNP.prototype.details = function PNP() {
return this.x;
}
PNP.prototype.get = function PNP() {
}
PNP.prototype.set = function PNP() {
this.x = arg1;
graphics = arg1.graphics;
exprs = graphics.exprs;
model = arg1.model;
this.x = arg1;
exprs = this.x.graphics.exprs;
while (true) {
[ok,Bf,Br,Is,Vak,Tauf,Taur,Ccs,Cje,Cjc,Phie,Me,Phic,Mc,Gbc,Gbe,Vt,EMinMax,exprs] = scicos_getvalue([["Set PNP block parameters:"],[""]],[["Bf : Forward beta"],["Br : Reverse beta"],["Is : Transport saturation current"],["Vak : Early voltage (inverse), 1/Volt"],["Tauf: Ideal forward transit time"],["Taur: Ideal reverse transit time"],["Ccs : Collector-substrat(ground) cap."],["Cje : Base-emitter zero bias depletion cap."],["Cjc : Base-coll. zero bias depletion cap."],["Phie: Base-emitter diffusion voltage"],["Me : Base-emitter gradation exponent"],["Phic: Base-collector diffusion voltage"],["Mc : Base-collector gradation exponent"],["Gbc : Base-collector conductance"],["Gbe : Base-emitter conductance"],["Vt : Voltage equivalent of temperature"],["EMinMax: if x > EMinMax, the exp(x) function is linearized"]],list("vec",1,"vec",1,"vec",1,"vec",1,"vec",1,"vec",1,"vec",1,"vec",1,"vec",1,"vec",1,"vec",1,"vec",1,"vec",1,"vec",1,"vec",1,"vec",1,"vec",1),exprs);
if (!ok) {
break;
}
this.x.model.equations.parameters[2-1] = list(Bf,Br,Is,Vak,Tauf,Taur,Ccs,Cje,Cjc,Phie,Me,Phic,Mc,Gbc,Gbe,Vt,EMinMax);
this.x.graphics.exprs = exprs;
break;
}
}
}
|