/* autogenerated from "macros/Electrical/PNP.sci" */ function PNP() { PNP.prototype.define = function PNP() { ModelName = "PNP"; PrametersValue = [[50],[0.1],[0],[0.02],[1.200e-10],[5.000e-09],[1.000e-12],[4.000e-13],[5.000e-13],[0.8],[0.4],[0.8],[0.333],[1.000e-15],[1.000e-15],[0.02585],[40]]; ParametersName = [["Bf"],["Br"],["Is"],["Vak"],["Tauf"],["Taur"],["Ccs"],["Cje"],["Cjc"],["Phie"],["Me"],["Phic"],["Mc"],["Gbc"],["Gbe"],["Vt"],["EMinMax"]]; model = scicos_model(); Typein = []; Typeout = []; MI = []; MO = []; P = [[100,90,-2,0],[0,50,2,0],[100,10,-2,0]]; PortName = [["C"],["B"],["E"]]; for (i=1;i<=size(P,"r");i+=1) { if (P[i-1][3-1]==1) { Typein = [[Typein],["E"]]; MI = [[MI],[PortName[i-1]]]; } if (P[i-1][3-1]==2) { Typein = [[Typein],["I"]]; MI = [[MI],[PortName[i-1]]]; } if (P[i-1][3-1]==-1) { Typeout = [[Typeout],["E"]]; MO = [[MO],[PortName[i-1]]]; } if (P[i-1][3-1]==-2) { Typeout = [[Typeout],["I"]]; MO = [[MO],[PortName[i-1]]]; } } model = scicos_model(); mo = modelica(); model.sim = ModelName; mo.inputs = MI; mo.outputs = MO; model.rpar = PrametersValue; mo.parameters = list(ParametersName,PrametersValue,zeros(ParametersName)); exprs = [["50"],["0.1"],["1.e-16"],["0.02"],["0.12e-9"],["5e-9"],["1e-12"],["0.4e-12"],["0.5e-12"],["0.8"],["0.4"],["0.8"],["0.333"],["1e-15"],["1e-15"],["0.02585"],["40"]]; gr_i = []; model.blocktype = "c"; model.dep_ut = [false,true]; mo.model = ModelName; model.equations = mo; model.in1 = ones(size(MI,"*"),1); model.out = ones(size(MO,"*"),1); this.x = standard_define([2,2],model,exprs,list(gr_i,0)); this.x.graphics.in_implicit = Typein; this.x.graphics.out_implicit = Typeout; } PNP.prototype.details = function PNP() { return this.x; } PNP.prototype.get = function PNP() { } PNP.prototype.set = function PNP() { this.x = arg1; graphics = arg1.graphics; exprs = graphics.exprs; model = arg1.model; this.x = arg1; exprs = this.x.graphics.exprs; while (true) { [ok,Bf,Br,Is,Vak,Tauf,Taur,Ccs,Cje,Cjc,Phie,Me,Phic,Mc,Gbc,Gbe,Vt,EMinMax,exprs] = scicos_getvalue([["Set PNP block parameters:"],[""]],[["Bf : Forward beta"],["Br : Reverse beta"],["Is : Transport saturation current"],["Vak : Early voltage (inverse), 1/Volt"],["Tauf: Ideal forward transit time"],["Taur: Ideal reverse transit time"],["Ccs : Collector-substrat(ground) cap."],["Cje : Base-emitter zero bias depletion cap."],["Cjc : Base-coll. zero bias depletion cap."],["Phie: Base-emitter diffusion voltage"],["Me : Base-emitter gradation exponent"],["Phic: Base-collector diffusion voltage"],["Mc : Base-collector gradation exponent"],["Gbc : Base-collector conductance"],["Gbe : Base-emitter conductance"],["Vt : Voltage equivalent of temperature"],["EMinMax: if x > EMinMax, the exp(x) function is linearized"]],list("vec",1,"vec",1,"vec",1,"vec",1,"vec",1,"vec",1,"vec",1,"vec",1,"vec",1,"vec",1,"vec",1,"vec",1,"vec",1,"vec",1,"vec",1,"vec",1,"vec",1),exprs); if (!ok) { break; } this.x.model.equations.parameters[2-1] = list(Bf,Br,Is,Vak,Tauf,Taur,Ccs,Cje,Cjc,Phie,Me,Phic,Mc,Gbc,Gbe,Vt,EMinMax); this.x.graphics.exprs = exprs; break; } } }