1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
|
/* -*- c++ -*- */
/*
* Copyright 2006,2012 Free Software Foundation, Inc.
*
* This file is part of GNU Radio
*
* GNU Radio is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3, or (at your option)
* any later version.
*
* GNU Radio is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNU Radio; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
#ifndef INCLUDED_ANALOG_AGC_H
#define INCLUDED_ANALOG_AGC_H
#include <analog/api.h>
#include <gr_complex.h>
#include <math.h>
namespace gr {
namespace analog {
namespace kernel {
/*!
* \brief high performance Automatic Gain Control class for complex signals.
*
* For Power the absolute value of the complex number is used.
*/
class ANALOG_API agc_cc
{
public:
agc_cc(float rate = 1e-4, float reference = 1.0,
float gain = 1.0, float max_gain = 0.0)
: _rate(rate), _reference(reference),
_gain(gain), _max_gain(max_gain) {};
virtual ~agc_cc() {};
float rate() const { return _rate; }
float reference() const { return _reference; }
float gain() const { return _gain; }
float max_gain() const { return _max_gain; }
void set_rate(float rate) { _rate = rate; }
void set_reference(float reference) { _reference = reference; }
void set_gain(float gain) { _gain = gain; }
void set_max_gain(float max_gain) { _max_gain = max_gain; }
gr_complex scale(gr_complex input)
{
gr_complex output = input * _gain;
_gain += _rate * (_reference - sqrt(output.real()*output.real() +
output.imag()*output.imag()));
if(_max_gain > 0.0 && _gain > _max_gain) {
_gain = _max_gain;
}
return output;
}
void scaleN(gr_complex output[], const gr_complex input[], unsigned n)
{
for(unsigned i = 0; i < n; i++) {
output[i] = scale (input[i]);
}
}
protected:
float _rate; // adjustment rate
float _reference; // reference value
float _gain; // current gain
float _max_gain; // max allowable gain
};
/*!
* \brief high performance Automatic Gain Control class for float signals.
*
* Power is approximated by absolute value
*/
class ANALOG_API agc_ff
{
public:
agc_ff(float rate = 1e-4, float reference = 1.0,
float gain = 1.0, float max_gain = 0.0)
: _rate(rate), _reference(reference), _gain(gain),
_max_gain(max_gain) {};
~agc_ff() {};
float rate () const { return _rate; }
float reference () const { return _reference; }
float gain () const { return _gain; }
float max_gain () const { return _max_gain; }
void set_rate (float rate) { _rate = rate; }
void set_reference (float reference) { _reference = reference; }
void set_gain (float gain) { _gain = gain; }
void set_max_gain (float max_gain) { _max_gain = max_gain; }
float scale (float input)
{
float output = input * _gain;
_gain += (_reference - fabsf (output)) * _rate;
if(_max_gain > 0.0 && _gain > _max_gain)
_gain = _max_gain;
return output;
}
void scaleN(float output[], const float input[], unsigned n)
{
for(unsigned i = 0; i < n; i++)
output[i] = scale (input[i]);
}
protected:
float _rate; // adjustment rate
float _reference; // reference value
float _gain; // current gain
float _max_gain; // maximum gain
};
} /* namespace kernel */
} /* namespace analog */
} /* namespace gr */
#endif /* INCLUDED_ANALOG_AGC_H */
|