/* -*- c++ -*- */ /* * Copyright 2006,2012 Free Software Foundation, Inc. * * This file is part of GNU Radio * * GNU Radio is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3, or (at your option) * any later version. * * GNU Radio is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNU Radio; see the file COPYING. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, * Boston, MA 02110-1301, USA. */ #ifndef INCLUDED_ANALOG_AGC_H #define INCLUDED_ANALOG_AGC_H #include #include #include namespace gr { namespace analog { namespace kernel { /*! * \brief high performance Automatic Gain Control class for complex signals. * * For Power the absolute value of the complex number is used. */ class ANALOG_API agc_cc { public: agc_cc(float rate = 1e-4, float reference = 1.0, float gain = 1.0, float max_gain = 0.0) : _rate(rate), _reference(reference), _gain(gain), _max_gain(max_gain) {}; virtual ~agc_cc() {}; float rate() const { return _rate; } float reference() const { return _reference; } float gain() const { return _gain; } float max_gain() const { return _max_gain; } void set_rate(float rate) { _rate = rate; } void set_reference(float reference) { _reference = reference; } void set_gain(float gain) { _gain = gain; } void set_max_gain(float max_gain) { _max_gain = max_gain; } gr_complex scale(gr_complex input) { gr_complex output = input * _gain; _gain += _rate * (_reference - sqrt(output.real()*output.real() + output.imag()*output.imag())); if(_max_gain > 0.0 && _gain > _max_gain) { _gain = _max_gain; } return output; } void scaleN(gr_complex output[], const gr_complex input[], unsigned n) { for(unsigned i = 0; i < n; i++) { output[i] = scale (input[i]); } } protected: float _rate; // adjustment rate float _reference; // reference value float _gain; // current gain float _max_gain; // max allowable gain }; /*! * \brief high performance Automatic Gain Control class for float signals. * * Power is approximated by absolute value */ class ANALOG_API agc_ff { public: agc_ff(float rate = 1e-4, float reference = 1.0, float gain = 1.0, float max_gain = 0.0) : _rate(rate), _reference(reference), _gain(gain), _max_gain(max_gain) {}; ~agc_ff() {}; float rate () const { return _rate; } float reference () const { return _reference; } float gain () const { return _gain; } float max_gain () const { return _max_gain; } void set_rate (float rate) { _rate = rate; } void set_reference (float reference) { _reference = reference; } void set_gain (float gain) { _gain = gain; } void set_max_gain (float max_gain) { _max_gain = max_gain; } float scale (float input) { float output = input * _gain; _gain += (_reference - fabsf (output)) * _rate; if(_max_gain > 0.0 && _gain > _max_gain) _gain = _max_gain; return output; } void scaleN(float output[], const float input[], unsigned n) { for(unsigned i = 0; i < n; i++) output[i] = scale (input[i]); } protected: float _rate; // adjustment rate float _reference; // reference value float _gain; // current gain float _max_gain; // maximum gain }; } /* namespace kernel */ } /* namespace analog */ } /* namespace gr */ #endif /* INCLUDED_ANALOG_AGC_H */