summaryrefslogtreecommitdiff
path: root/gnuradio-examples/python/usrp/fm_tx_2_daughterboards.py
blob: 1cb161018fb90106be94c5e59db903764e09385e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
#!/usr/bin/env python

"""
Transmit 2 signals, one out each daughterboard.

Outputs SSB (USB) signals on side A and side B at frequencies
specified on command line.

Side A is 600 Hz tone.
Side B is 350 + 440 Hz tones.
"""

from gnuradio import gr
from gnuradio.eng_notation import num_to_str, str_to_num
from gnuradio import usrp
from gnuradio import audio
from gnuradio import blks
from gnuradio.eng_option import eng_option
from optparse import OptionParser
import usrp_dbid
import math
import sys


class example_signal_0(gr.hier_block):
    """
    Sinusoid at 600 Hz.
    """
    def __init__(self, fg, sample_rate):

        src = gr.sig_source_c (sample_rate,    # sample rate
                               gr.GR_SIN_WAVE, # waveform type
                               600,            # frequency
                               1.0,            # amplitude
                               0)              # DC Offset
    
        gr.hier_block.__init__(self, fg, None, src)


class example_signal_1(gr.hier_block):
    """
    North American dial tone (350 + 440 Hz).
    """
    def __init__(self, fg, sample_rate):

        src0 = gr.sig_source_c (sample_rate,    # sample rate
                                gr.GR_SIN_WAVE, # waveform type
                                350,            # frequency
                                1.0,            # amplitude
                                0)              # DC Offset

        src1 = gr.sig_source_c (sample_rate,    # sample rate
                                gr.GR_SIN_WAVE, # waveform type
                                440,            # frequency
                                1.0,            # amplitude
                                0)              # DC Offset
        sum = gr.add_cc()
        fg.connect(src0, (sum, 0))
        fg.connect(src1, (sum, 1))
        
        gr.hier_block.__init__(self, fg, None, sum)
    


class my_graph(gr.flow_graph):

    def __init__(self):
        gr.flow_graph.__init__ (self)

        usage="%prog: [options] side-A-tx-freq side-B-tx-freq"
        parser = OptionParser (option_class=eng_option, usage=usage)
        (options, args) = parser.parse_args ()

        if len(args) != 2:
            parser.print_help()
            raise SystemExit
        else:
            freq0 = str_to_num(args[0])
            freq1 = str_to_num(args[1])

        # ----------------------------------------------------------------
        # Set up USRP to transmit on both daughterboards

        self.u = usrp.sink_c(nchan=2)          # say we want two channels

        self.dac_rate = self.u.dac_rate()                    # 128 MS/s
        self.usrp_interp = 400
        self.u.set_interp_rate(self.usrp_interp)
        self.usrp_rate = self.dac_rate / self.usrp_interp    # 320 kS/s

        # we're using both daughterboard slots, thus subdev is a 2-tuple
        self.subdev = (self.u.db[0][0], self.u.db[1][0])
        print "Using TX d'board %s" % (self.subdev[0].side_and_name(),)
        print "Using TX d'board %s" % (self.subdev[1].side_and_name(),)
        
        # set up the Tx mux so that
        #  channel 0 goes to Slot A I&Q and channel 1 to Slot B I&Q
        self.u.set_mux(0xba98)

        self.subdev[0].set_gain(self.subdev[0].gain_range()[1])    # set max Tx gain
        self.subdev[1].set_gain(self.subdev[1].gain_range()[1])    # set max Tx gain

        self.set_freq(0, freq0)
        self.set_freq(1, freq1)
        self.subdev[0].set_enable(True)             # enable transmitter
        self.subdev[1].set_enable(True)             # enable transmitter

        # ----------------------------------------------------------------
        # build two signal sources, interleave them, amplify and connect them to usrp

        sig0 = example_signal_0(self, self.usrp_rate)
        sig1 = example_signal_1(self, self.usrp_rate)

        intl = gr.interleave(gr.sizeof_gr_complex)
        self.connect(sig0, (intl, 0))
        self.connect(sig1, (intl, 1))

        # apply some gain
        if_gain = 10000
        ifamp = gr.multiply_const_cc(if_gain)
        
        # and wire them up
        self.connect(intl, ifamp, self.u)
        

    def set_freq(self, side, target_freq):
        """
        Set the center frequency we're interested in.

        @param side: 0 = side A, 1 = side B
        @param target_freq: frequency in Hz
        @rtype: bool

        Tuning is a two step process.  First we ask the front-end to
        tune as close to the desired frequency as it can.  Then we use
        the result of that operation and our target_frequency to
        determine the value for the digital up converter.
        """

        print "Tuning side %s to %sHz" % (("A", "B")[side], num_to_str(target_freq))
        r = self.u.tune(self.subdev[side]._which, self.subdev[side], target_freq)
        if r:
            print "  r.baseband_freq =", num_to_str(r.baseband_freq)
            print "  r.dxc_freq      =", num_to_str(r.dxc_freq)
            print "  r.residual_freq =", num_to_str(r.residual_freq)
            print "  r.inverted      =", r.inverted
            print "  OK"
            return True

        else:
            print "  Failed!"
            
        return False


if __name__ == '__main__':
    try:
        my_graph().run()
    except KeyboardInterrupt:
        pass