summaryrefslogtreecommitdiff
path: root/gnuradio-examples/python/usrp/fm_tx_2_daughterboards.py
diff options
context:
space:
mode:
Diffstat (limited to 'gnuradio-examples/python/usrp/fm_tx_2_daughterboards.py')
-rwxr-xr-xgnuradio-examples/python/usrp/fm_tx_2_daughterboards.py160
1 files changed, 160 insertions, 0 deletions
diff --git a/gnuradio-examples/python/usrp/fm_tx_2_daughterboards.py b/gnuradio-examples/python/usrp/fm_tx_2_daughterboards.py
new file mode 100755
index 000000000..1cb161018
--- /dev/null
+++ b/gnuradio-examples/python/usrp/fm_tx_2_daughterboards.py
@@ -0,0 +1,160 @@
+#!/usr/bin/env python
+
+"""
+Transmit 2 signals, one out each daughterboard.
+
+Outputs SSB (USB) signals on side A and side B at frequencies
+specified on command line.
+
+Side A is 600 Hz tone.
+Side B is 350 + 440 Hz tones.
+"""
+
+from gnuradio import gr
+from gnuradio.eng_notation import num_to_str, str_to_num
+from gnuradio import usrp
+from gnuradio import audio
+from gnuradio import blks
+from gnuradio.eng_option import eng_option
+from optparse import OptionParser
+import usrp_dbid
+import math
+import sys
+
+
+class example_signal_0(gr.hier_block):
+ """
+ Sinusoid at 600 Hz.
+ """
+ def __init__(self, fg, sample_rate):
+
+ src = gr.sig_source_c (sample_rate, # sample rate
+ gr.GR_SIN_WAVE, # waveform type
+ 600, # frequency
+ 1.0, # amplitude
+ 0) # DC Offset
+
+ gr.hier_block.__init__(self, fg, None, src)
+
+
+class example_signal_1(gr.hier_block):
+ """
+ North American dial tone (350 + 440 Hz).
+ """
+ def __init__(self, fg, sample_rate):
+
+ src0 = gr.sig_source_c (sample_rate, # sample rate
+ gr.GR_SIN_WAVE, # waveform type
+ 350, # frequency
+ 1.0, # amplitude
+ 0) # DC Offset
+
+ src1 = gr.sig_source_c (sample_rate, # sample rate
+ gr.GR_SIN_WAVE, # waveform type
+ 440, # frequency
+ 1.0, # amplitude
+ 0) # DC Offset
+ sum = gr.add_cc()
+ fg.connect(src0, (sum, 0))
+ fg.connect(src1, (sum, 1))
+
+ gr.hier_block.__init__(self, fg, None, sum)
+
+
+
+class my_graph(gr.flow_graph):
+
+ def __init__(self):
+ gr.flow_graph.__init__ (self)
+
+ usage="%prog: [options] side-A-tx-freq side-B-tx-freq"
+ parser = OptionParser (option_class=eng_option, usage=usage)
+ (options, args) = parser.parse_args ()
+
+ if len(args) != 2:
+ parser.print_help()
+ raise SystemExit
+ else:
+ freq0 = str_to_num(args[0])
+ freq1 = str_to_num(args[1])
+
+ # ----------------------------------------------------------------
+ # Set up USRP to transmit on both daughterboards
+
+ self.u = usrp.sink_c(nchan=2) # say we want two channels
+
+ self.dac_rate = self.u.dac_rate() # 128 MS/s
+ self.usrp_interp = 400
+ self.u.set_interp_rate(self.usrp_interp)
+ self.usrp_rate = self.dac_rate / self.usrp_interp # 320 kS/s
+
+ # we're using both daughterboard slots, thus subdev is a 2-tuple
+ self.subdev = (self.u.db[0][0], self.u.db[1][0])
+ print "Using TX d'board %s" % (self.subdev[0].side_and_name(),)
+ print "Using TX d'board %s" % (self.subdev[1].side_and_name(),)
+
+ # set up the Tx mux so that
+ # channel 0 goes to Slot A I&Q and channel 1 to Slot B I&Q
+ self.u.set_mux(0xba98)
+
+ self.subdev[0].set_gain(self.subdev[0].gain_range()[1]) # set max Tx gain
+ self.subdev[1].set_gain(self.subdev[1].gain_range()[1]) # set max Tx gain
+
+ self.set_freq(0, freq0)
+ self.set_freq(1, freq1)
+ self.subdev[0].set_enable(True) # enable transmitter
+ self.subdev[1].set_enable(True) # enable transmitter
+
+ # ----------------------------------------------------------------
+ # build two signal sources, interleave them, amplify and connect them to usrp
+
+ sig0 = example_signal_0(self, self.usrp_rate)
+ sig1 = example_signal_1(self, self.usrp_rate)
+
+ intl = gr.interleave(gr.sizeof_gr_complex)
+ self.connect(sig0, (intl, 0))
+ self.connect(sig1, (intl, 1))
+
+ # apply some gain
+ if_gain = 10000
+ ifamp = gr.multiply_const_cc(if_gain)
+
+ # and wire them up
+ self.connect(intl, ifamp, self.u)
+
+
+ def set_freq(self, side, target_freq):
+ """
+ Set the center frequency we're interested in.
+
+ @param side: 0 = side A, 1 = side B
+ @param target_freq: frequency in Hz
+ @rtype: bool
+
+ Tuning is a two step process. First we ask the front-end to
+ tune as close to the desired frequency as it can. Then we use
+ the result of that operation and our target_frequency to
+ determine the value for the digital up converter.
+ """
+
+ print "Tuning side %s to %sHz" % (("A", "B")[side], num_to_str(target_freq))
+ r = self.u.tune(self.subdev[side]._which, self.subdev[side], target_freq)
+ if r:
+ print " r.baseband_freq =", num_to_str(r.baseband_freq)
+ print " r.dxc_freq =", num_to_str(r.dxc_freq)
+ print " r.residual_freq =", num_to_str(r.residual_freq)
+ print " r.inverted =", r.inverted
+ print " OK"
+ return True
+
+ else:
+ print " Failed!"
+
+ return False
+
+
+if __name__ == '__main__':
+ try:
+ my_graph().run()
+ except KeyboardInterrupt:
+ pass