summaryrefslogtreecommitdiff
path: root/gnuradio-core/src/lib/general/gr_nco.h
blob: 2cf41fd775725a49233678b003be5b63513c8a9c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
/* -*- c++ -*- */
/*
 * Copyright 2002 Free Software Foundation, Inc.
 * 
 * This file is part of GNU Radio
 * 
 * GNU Radio is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2, or (at your option)
 * any later version.
 * 
 * GNU Radio is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with GNU Radio; see the file COPYING.  If not, write to
 * the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 02111-1307, USA.
 */
#ifndef _GR_NCO_H_
#define _GR_NCO_H_


#include <vector>
#include <gr_sincos.h>
#include <cmath>
#include <gr_complex.h>

/*!
 * \brief base class template for Numerically Controlled Oscillator (NCO)
 */


//FIXME  Eventually generalize this to fixed point

template<class o_type, class i_type> 
class gr_nco {
public:
  gr_nco () : phase (0), phase_inc(0) {}

  virtual ~gr_nco () {}

  // radians
  void set_phase (double angle) {
    phase = angle;
  }

  void adjust_phase (double delta_phase) {
    phase += delta_phase;
  }


  // angle_rate is in radians / step
  void set_freq (double angle_rate){
    phase_inc = angle_rate;
  }

  // angle_rate is a delta in radians / step
  void adjust_freq (double delta_angle_rate)
  {
    phase_inc += delta_angle_rate;
  }

  // increment current phase angle

  void step () 
  { 
    phase += phase_inc; 
    if (fabs (phase) > M_PI){
      
      while (phase > M_PI)
	phase -= 2*M_PI;

      while (phase < -M_PI)
	phase += 2*M_PI;
    }
  }

  void step (int n)
  {
    phase += phase_inc * n;
    if (fabs (phase) > M_PI){
      
      while (phase > M_PI)
	phase -= 2*M_PI;

      while (phase < -M_PI)
	phase += 2*M_PI;
    }
  }

  // units are radians / step
  double get_phase () const { return phase; }
  double get_freq () const { return phase_inc; }

  // compute sin and cos for current phase angle
  void sincos (float *sinx, float *cosx) const;

  // compute cos or sin for current phase angle
  float cos () const { return std::cos (phase); }
  float sin () const { return std::sin (phase); }

  // compute a block at a time
  void sin (float *output, int noutput_items, double ampl = 1.0);
  void cos (float *output, int noutput_items, double ampl = 1.0);
  void sincos (gr_complex *output, int noutput_items, double ampl = 1.0);
  void sin (short *output, int noutput_items, double ampl = 1.0);
  void cos (short *output, int noutput_items, double ampl = 1.0);
  void sin (int *output, int noutput_items, double ampl = 1.0);
  void cos (int *output, int noutput_items, double ampl = 1.0);

protected:
  double phase;
  double phase_inc;
};

template<class o_type, class i_type> 
void
gr_nco<o_type,i_type>::sincos (float *sinx, float *cosx) const
{
  gr_sincosf (phase, sinx, cosx);
}

template<class o_type, class i_type> 
void
gr_nco<o_type,i_type>::sin (float *output, int noutput_items, double ampl)
{
  for (int i = 0; i < noutput_items; i++){
    output[i] = (float)(sin () * ampl);
    step ();
  }
}

template<class o_type, class i_type> 
void
gr_nco<o_type,i_type>::cos (float *output, int noutput_items, double ampl)
{
  for (int i = 0; i < noutput_items; i++){
    output[i] = (float)(cos () * ampl);
    step ();
  }
}

template<class o_type, class i_type> 
void
gr_nco<o_type,i_type>::sin (short *output, int noutput_items, double ampl)
{
  for (int i = 0; i < noutput_items; i++){
    output[i] = (short)(sin() * ampl);
    step ();
  }
}

template<class o_type, class i_type> 
void
gr_nco<o_type,i_type>::cos (short *output, int noutput_items, double ampl)
{
  for (int i = 0; i < noutput_items; i++){
    output[i] = (short)(cos () * ampl);
    step ();
  }
}

template<class o_type, class i_type> 
void
gr_nco<o_type,i_type>::sin (int *output, int noutput_items, double ampl)
{
  for (int i = 0; i < noutput_items; i++){
    output[i] = (int)(sin () * ampl);
    step ();
  }
}

template<class o_type, class i_type> 
void
gr_nco<o_type,i_type>::cos (int *output, int noutput_items, double ampl)
{
  for (int i = 0; i < noutput_items; i++){
    output[i] = (int)(cos () * ampl);
    step ();
  }
}

template<class o_type, class i_type> 
void
gr_nco<o_type,i_type>::sincos (gr_complex *output, int noutput_items, double ampl)
{
  for (int i = 0; i < noutput_items; i++){
    float cosx, sinx;
    sincos (&sinx, &cosx);
    output[i] = gr_complex(cosx * ampl, sinx * ampl);
    step ();
  }
}
#endif /* _NCO_H_ */