/* -*- c++ -*- */ /* * Copyright 2002 Free Software Foundation, Inc. * * This file is part of GNU Radio * * GNU Radio is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * GNU Radio is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNU Radio; see the file COPYING. If not, write to * the Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #ifndef _GR_NCO_H_ #define _GR_NCO_H_ #include #include #include #include /*! * \brief base class template for Numerically Controlled Oscillator (NCO) */ //FIXME Eventually generalize this to fixed point template class gr_nco { public: gr_nco () : phase (0), phase_inc(0) {} virtual ~gr_nco () {} // radians void set_phase (double angle) { phase = angle; } void adjust_phase (double delta_phase) { phase += delta_phase; } // angle_rate is in radians / step void set_freq (double angle_rate){ phase_inc = angle_rate; } // angle_rate is a delta in radians / step void adjust_freq (double delta_angle_rate) { phase_inc += delta_angle_rate; } // increment current phase angle void step () { phase += phase_inc; if (fabs (phase) > M_PI){ while (phase > M_PI) phase -= 2*M_PI; while (phase < -M_PI) phase += 2*M_PI; } } void step (int n) { phase += phase_inc * n; if (fabs (phase) > M_PI){ while (phase > M_PI) phase -= 2*M_PI; while (phase < -M_PI) phase += 2*M_PI; } } // units are radians / step double get_phase () const { return phase; } double get_freq () const { return phase_inc; } // compute sin and cos for current phase angle void sincos (float *sinx, float *cosx) const; // compute cos or sin for current phase angle float cos () const { return std::cos (phase); } float sin () const { return std::sin (phase); } // compute a block at a time void sin (float *output, int noutput_items, double ampl = 1.0); void cos (float *output, int noutput_items, double ampl = 1.0); void sincos (gr_complex *output, int noutput_items, double ampl = 1.0); void sin (short *output, int noutput_items, double ampl = 1.0); void cos (short *output, int noutput_items, double ampl = 1.0); void sin (int *output, int noutput_items, double ampl = 1.0); void cos (int *output, int noutput_items, double ampl = 1.0); protected: double phase; double phase_inc; }; template void gr_nco::sincos (float *sinx, float *cosx) const { gr_sincosf (phase, sinx, cosx); } template void gr_nco::sin (float *output, int noutput_items, double ampl) { for (int i = 0; i < noutput_items; i++){ output[i] = (float)(sin () * ampl); step (); } } template void gr_nco::cos (float *output, int noutput_items, double ampl) { for (int i = 0; i < noutput_items; i++){ output[i] = (float)(cos () * ampl); step (); } } template void gr_nco::sin (short *output, int noutput_items, double ampl) { for (int i = 0; i < noutput_items; i++){ output[i] = (short)(sin() * ampl); step (); } } template void gr_nco::cos (short *output, int noutput_items, double ampl) { for (int i = 0; i < noutput_items; i++){ output[i] = (short)(cos () * ampl); step (); } } template void gr_nco::sin (int *output, int noutput_items, double ampl) { for (int i = 0; i < noutput_items; i++){ output[i] = (int)(sin () * ampl); step (); } } template void gr_nco::cos (int *output, int noutput_items, double ampl) { for (int i = 0; i < noutput_items; i++){ output[i] = (int)(cos () * ampl); step (); } } template void gr_nco::sincos (gr_complex *output, int noutput_items, double ampl) { for (int i = 0; i < noutput_items; i++){ float cosx, sinx; sincos (&sinx, &cosx); output[i] = gr_complex(cosx * ampl, sinx * ampl); step (); } } #endif /* _NCO_H_ */