diff options
Diffstat (limited to 'gnuradio-examples')
-rw-r--r-- | gnuradio-examples/python/pfb/CMakeLists.txt | 1 | ||||
-rwxr-xr-x | gnuradio-examples/python/pfb/channelize.py | 5 | ||||
-rwxr-xr-x | gnuradio-examples/python/pfb/reconstruction.py | 131 |
3 files changed, 136 insertions, 1 deletions
diff --git a/gnuradio-examples/python/pfb/CMakeLists.txt b/gnuradio-examples/python/pfb/CMakeLists.txt index 55dbb16ac..88fdf2ead 100644 --- a/gnuradio-examples/python/pfb/CMakeLists.txt +++ b/gnuradio-examples/python/pfb/CMakeLists.txt @@ -29,6 +29,7 @@ GR_PYTHON_INSTALL(PROGRAMS resampler.py synth_filter.py synth_to_chan.py + reconstruction.py DESTINATION ${GR_PKG_DATA_DIR}/examples/pfb COMPONENT "gnuradio_examples" ) diff --git a/gnuradio-examples/python/pfb/channelize.py b/gnuradio-examples/python/pfb/channelize.py index 999e5d20e..2fcb14a36 100755 --- a/gnuradio-examples/python/pfb/channelize.py +++ b/gnuradio-examples/python/pfb/channelize.py @@ -68,7 +68,7 @@ class pfb_top_block(gr.top_block): self.head = gr.head(gr.sizeof_gr_complex, self._N) # Construct the channelizer filter - self.pfb = blks2.pfb_channelizer_ccf(self._M, self._taps) + self.pfb = blks2.pfb_channelizer_ccf(self._M, self._taps, 1) # Construct a vector sink for the input signal to the channelizer self.snk_i = gr.vector_sink_c() @@ -77,6 +77,9 @@ class pfb_top_block(gr.top_block): self.connect(self.add, self.head, self.pfb) self.connect(self.add, self.snk_i) + # Use this to play with the channel mapping + #self.pfb.set_channel_map([5,6,7,8,0,1,2,3,4]) + # Create a vector sink for each of M output channels of the filter and connect it self.snks = list() for i in xrange(self._M): diff --git a/gnuradio-examples/python/pfb/reconstruction.py b/gnuradio-examples/python/pfb/reconstruction.py new file mode 100755 index 000000000..2b6f9a831 --- /dev/null +++ b/gnuradio-examples/python/pfb/reconstruction.py @@ -0,0 +1,131 @@ +#!/usr/bin/env python + +import scipy, math, pylab +from scipy import fftpack +from gnuradio import gr, digital, blks2 + +fftlen = 8192 + +def main(): + N = 10000 + fs = 2000.0 + Ts = 1.0/fs + t = scipy.arange(0, N*Ts, Ts) + + # When playing with the number of channels, be careful about the filter + # specs and the channel map of the synthesizer set below. + nchans = 10 + + # Build the filter(s) + bw = 1000 + tb = 400 + proto_taps = gr.firdes.low_pass_2(1, nchans*fs, bw, tb, 80, + gr.firdes.WIN_BLACKMAN_hARRIS) + print "Filter length: ", len(proto_taps) + + + # Create a modulated signal + npwr = 0.01 + data = scipy.random.randint(0, 256, N) + rrc_taps = gr.firdes.root_raised_cosine(1, 2, 1, 0.35, 41) + + src = gr.vector_source_b(data.astype(scipy.uint8).tolist(), False) + mod = digital.bpsk_mod(samples_per_symbol=2) + chan = gr.channel_model(npwr) + rrc = gr.fft_filter_ccc(1, rrc_taps) + + # Split it up into pieces + channelizer = blks2.pfb_channelizer_ccf(nchans, proto_taps, 2) + + # Put the pieces back together again + syn_taps = [nchans*t for t in proto_taps] + synthesizer = gr.pfb_synthesis_filterbank_ccf(nchans, syn_taps, True) + src_snk = gr.vector_sink_c() + snk = gr.vector_sink_c() + + # Remap the location of the channels + # Can be done in synth or channelizer (watch out for rotattions in + # the channelizer) + synthesizer.set_channel_map([ 0, 1, 2, 3, 4, + 15, 16, 17, 18, 19]) + + tb = gr.top_block() + tb.connect(src, mod, chan, rrc, channelizer) + tb.connect(rrc, src_snk) + + vsnk = [] + for i in xrange(nchans): + tb.connect((channelizer,i), (synthesizer, i)) + + vsnk.append(gr.vector_sink_c()) + tb.connect((channelizer,i), vsnk[i]) + + tb.connect(synthesizer, snk) + tb.run() + + sin = scipy.array(src_snk.data()[1000:]) + sout = scipy.array(snk.data()[1000:]) + + + # Plot original signal + fs_in = nchans*fs + f1 = pylab.figure(1, figsize=(16,12), facecolor='w') + s11 = f1.add_subplot(2,2,1) + s11.psd(sin, NFFT=fftlen, Fs=fs_in) + s11.set_title("PSD of Original Signal") + s11.set_ylim([-200, -20]) + + s12 = f1.add_subplot(2,2,2) + s12.plot(sin.real[1000:1500], "o-b") + s12.plot(sin.imag[1000:1500], "o-r") + s12.set_title("Original Signal in Time") + + start = 1 + skip = 4 + s13 = f1.add_subplot(2,2,3) + s13.plot(sin.real[start::skip], sin.imag[start::skip], "o") + s13.set_title("Constellation") + s13.set_xlim([-2, 2]) + s13.set_ylim([-2, 2]) + + # Plot channels + nrows = int(scipy.sqrt(nchans)) + ncols = int(scipy.ceil(float(nchans)/float(nrows))) + + f2 = pylab.figure(2, figsize=(16,12), facecolor='w') + for n in xrange(nchans): + s = f2.add_subplot(nrows, ncols, n+1) + s.psd(vsnk[n].data(), NFFT=fftlen, Fs=fs_in) + s.set_title("Channel {0}".format(n)) + s.set_ylim([-200, -20]) + + # Plot reconstructed signal + fs_out = 2*nchans*fs + f3 = pylab.figure(3, figsize=(16,12), facecolor='w') + s31 = f3.add_subplot(2,2,1) + s31.psd(sout, NFFT=fftlen, Fs=fs_out) + s31.set_title("PSD of Reconstructed Signal") + s31.set_ylim([-200, -20]) + + s32 = f3.add_subplot(2,2,2) + s32.plot(sout.real[1000:1500], "o-b") + s32.plot(sout.imag[1000:1500], "o-r") + s32.set_title("Reconstructed Signal in Time") + + start = 2 + skip = 4 + s33 = f3.add_subplot(2,2,3) + s33.plot(sout.real[start::skip], sout.imag[start::skip], "o") + s33.set_title("Constellation") + s33.set_xlim([-2, 2]) + s33.set_ylim([-2, 2]) + + pylab.show() + + +if __name__ == "__main__": + try: + main() + except KeyboardInterrupt: + pass + |