diff options
12 files changed, 467 insertions, 63 deletions
diff --git a/gnuradio-core/src/lib/filter/gr_pfb_channelizer_ccf.cc b/gnuradio-core/src/lib/filter/gr_pfb_channelizer_ccf.cc index db16a634b..24fc35a19 100644 --- a/gnuradio-core/src/lib/filter/gr_pfb_channelizer_ccf.cc +++ b/gnuradio-core/src/lib/filter/gr_pfb_channelizer_ccf.cc @@ -46,7 +46,7 @@ gr_pfb_channelizer_ccf::gr_pfb_channelizer_ccf (unsigned int numchans, float oversample_rate) : gr_block ("pfb_channelizer_ccf", gr_make_io_signature (numchans, numchans, sizeof(gr_complex)), - gr_make_io_signature (1, 1, numchans*sizeof(gr_complex))), + gr_make_io_signature (1, numchans, sizeof(gr_complex))), d_updated (false), d_numchans(numchans), d_oversample_rate(oversample_rate) { // The over sampling rate must be rationally related to the number of channels @@ -62,11 +62,13 @@ gr_pfb_channelizer_ccf::gr_pfb_channelizer_ccf (unsigned int numchans, set_relative_rate(1.0/intp); d_filters = std::vector<gr_fir_ccf*>(d_numchans); + d_channel_map.resize(d_numchans); // Create an FIR filter for each channel and zero out the taps std::vector<float> vtaps(0, d_numchans); for(unsigned int i = 0; i < d_numchans; i++) { d_filters[i] = gr_fir_util::create_gr_fir_ccf(vtaps); + d_channel_map[i] = i; } // Now, actually set the filters' taps @@ -104,6 +106,7 @@ gr_pfb_channelizer_ccf::~gr_pfb_channelizer_ccf () void gr_pfb_channelizer_ccf::set_taps (const std::vector<float> &taps) { + gruel::scoped_lock guard(d_mutex); unsigned int i,j; unsigned int ntaps = taps.size(); @@ -151,6 +154,31 @@ gr_pfb_channelizer_ccf::print_taps() } } +std::vector< std::vector<float> > +gr_pfb_channelizer_ccf::taps() const +{ + return d_taps; +} + +void +gr_pfb_channelizer_ccf::set_channel_map(const std::vector<int> &map) +{ + gruel::scoped_lock guard(d_mutex); + + unsigned int max = (unsigned int)*std::max_element(map.begin(), map.end()); + unsigned int min = (unsigned int)*std::min_element(map.begin(), map.end()); + if((max >= d_numchans) || (min < 0)) { + throw std::invalid_argument("gr_pfb_channelizer_ccf::set_channel_map: map range out of bounds.\n"); + } + d_channel_map = map; +} + +std::vector<int> +gr_pfb_channelizer_ccf::channel_map() const +{ + return d_channel_map; +} + int gr_pfb_channelizer_ccf::general_work (int noutput_items, @@ -158,6 +186,8 @@ gr_pfb_channelizer_ccf::general_work (int noutput_items, gr_vector_const_void_star &input_items, gr_vector_void_star &output_items) { + gruel::scoped_lock guard(d_mutex); + gr_complex *in = (gr_complex *) input_items[0]; gr_complex *out = (gr_complex *) output_items[0]; @@ -166,7 +196,9 @@ gr_pfb_channelizer_ccf::general_work (int noutput_items, return 0; // history requirements may have changed. } - int n=1, i=-1, j=0, last; + size_t noutputs = output_items.size(); + + int n=1, i=-1, j=0, oo=0, last; int toconsume = (int)rintf(noutput_items/d_oversample_rate); while(n <= toconsume) { j = 0; @@ -191,8 +223,13 @@ gr_pfb_channelizer_ccf::general_work (int noutput_items, // despin through FFT d_fft->execute(); - memcpy(out, d_fft->get_outbuf(), d_numchans*sizeof(gr_complex)); - out += d_numchans; + + // Send to output channels + for(unsigned int nn = 0; nn < noutputs; nn++) { + out = (gr_complex*)output_items[nn]; + out[oo] = d_fft->get_outbuf()[d_channel_map[nn]]; + } + oo++; } consume_each(toconsume); diff --git a/gnuradio-core/src/lib/filter/gr_pfb_channelizer_ccf.h b/gnuradio-core/src/lib/filter/gr_pfb_channelizer_ccf.h index 8fd5c4f78..040b93e73 100644 --- a/gnuradio-core/src/lib/filter/gr_pfb_channelizer_ccf.h +++ b/gnuradio-core/src/lib/filter/gr_pfb_channelizer_ccf.h @@ -26,6 +26,7 @@ #include <gr_core_api.h> #include <gr_block.h> +#include <gruel/thread.h> class gr_pfb_channelizer_ccf; typedef boost::shared_ptr<gr_pfb_channelizer_ccf> gr_pfb_channelizer_ccf_sptr; @@ -146,6 +147,8 @@ class GR_CORE_API gr_pfb_channelizer_ccf : public gr_block int *d_idxlut; int d_rate_ratio; int d_output_multiple; + std::vector<int> d_channel_map; + gruel::mutex d_mutex; // mutex to protect set/work access /*! * Build the polyphase filterbank decimator. @@ -170,6 +173,49 @@ public: * Print all of the filterbank taps to screen. */ void print_taps(); + + /*! + * Return a vector<vector<>> of the filterbank taps + */ + std::vector<std::vector<float> > taps() const; + + /*! + * Set the channel map. Channels are numbers as: + * + * N/2+1 | ... | N-1 | 0 | 1 | 2 | ... | N/2 + * <------------------- 0 --------------------> + * freq + * + * So output stream 0 comes from channel 0, etc. Setting a new + * channel map allows the user to specify which channel in frequency + * he/she wants to got to which output stream. + * + * The map should have the same number of elements as the number of + * output connections from the block. The minimum value of the map + * is 0 (for the 0th channel) and the maximum number is N-1 where N + * is the number of channels. + * + * We specify M as the number of output connections made where M <= + * N, so only M out of N channels are driven to an output + * stream. The number of items in the channel map should be at least + * M long. If there are more channels specified, any value in the + * map over M-1 will be ignored. If the size of the map is less than + * M the behavior is unknown (we don't wish to check every entry + * into the work function). + * + * This means that if the channelizer is splitting the signal up + * into N channels but only M channels are specified in the map + * (where M <= N), then M output streams must be connected and the + * map and the channel numbers used must be less than N-1. Output + * channel number can be reused, too. By default, the map is + * [0...M-1] with M = N. + */ + void set_channel_map(const std::vector<int> &map); + + /*! + * Gets the current channel map. + */ + std::vector<int> channel_map() const; int general_work (int noutput_items, gr_vector_int &ninput_items, diff --git a/gnuradio-core/src/lib/filter/gr_pfb_channelizer_ccf.i b/gnuradio-core/src/lib/filter/gr_pfb_channelizer_ccf.i index 63e3e0fe6..f5edba5b7 100644 --- a/gnuradio-core/src/lib/filter/gr_pfb_channelizer_ccf.i +++ b/gnuradio-core/src/lib/filter/gr_pfb_channelizer_ccf.i @@ -37,4 +37,9 @@ class gr_pfb_channelizer_ccf : public gr_block ~gr_pfb_channelizer_ccf (); void set_taps (const std::vector<float> &taps); + void print_taps(); + std::vector<std::vector<float> > taps() const; + + void set_channel_map(const std::vector<int> &map); + std::vector<int> channel_map() const; }; diff --git a/gnuradio-core/src/lib/filter/gr_pfb_synthesis_filterbank_ccf.cc b/gnuradio-core/src/lib/filter/gr_pfb_synthesis_filterbank_ccf.cc index 9fad1bd0d..f999a2b92 100644 --- a/gnuradio-core/src/lib/filter/gr_pfb_synthesis_filterbank_ccf.cc +++ b/gnuradio-core/src/lib/filter/gr_pfb_synthesis_filterbank_ccf.cc @@ -31,45 +31,66 @@ #include <cstring> gr_pfb_synthesis_filterbank_ccf_sptr gr_make_pfb_synthesis_filterbank_ccf - (unsigned int numchans, const std::vector<float> &taps) + (unsigned int numchans, const std::vector<float> &taps, bool twox) { return gr_pfb_synthesis_filterbank_ccf_sptr - (new gr_pfb_synthesis_filterbank_ccf (numchans, taps)); + (new gr_pfb_synthesis_filterbank_ccf (numchans, taps, twox)); } gr_pfb_synthesis_filterbank_ccf::gr_pfb_synthesis_filterbank_ccf - (unsigned int numchans, const std::vector<float> &taps) + (unsigned int numchans, const std::vector<float> &taps, bool twox) : gr_sync_interpolator ("pfb_synthesis_filterbank_ccf", gr_make_io_signature (1, numchans, sizeof(gr_complex)), gr_make_io_signature (1, 1, sizeof(gr_complex)), numchans), - d_updated (false), d_numchans(numchans) + d_updated (false), d_numchans(numchans), d_state(0) { - d_filters = std::vector<gri_fir_filter_with_buffer_ccf*>(d_numchans); + // set up 2x multiplier; if twox==True, set to 2, otherwise to 1 + d_twox = (twox ? 2 : 1); + if(d_numchans % d_twox != 0) { + throw std::invalid_argument("gr_pfb_synthesis_filterbank_ccf: number of channels must be even for 2x oversampling.\n"); + } + + d_filters = std::vector<gri_fir_filter_with_buffer_ccf*>(d_twox*d_numchans); + d_channel_map.resize(d_twox*d_numchans); // Create an FIR filter for each channel and zero out the taps - std::vector<float> vtaps(0, d_numchans); - for(unsigned int i = 0; i < d_numchans; i++) { + std::vector<float> vtaps(0, d_twox*d_numchans); + for(unsigned int i = 0; i < d_twox*d_numchans; i++) { d_filters[i] = new gri_fir_filter_with_buffer_ccf(vtaps); + d_channel_map[i] = i; } // Now, actually set the filters' taps set_taps(taps); // Create the IFFT to handle the input channel rotations - d_fft = new gri_fft_complex (d_numchans, true); + d_fft = new gri_fft_complex (d_twox*d_numchans, false); + memset(d_fft->get_inbuf(), 0, d_twox*d_numchans*sizeof(gr_complex)); + + set_output_multiple(d_numchans); } gr_pfb_synthesis_filterbank_ccf::~gr_pfb_synthesis_filterbank_ccf () { - for(unsigned int i = 0; i < d_numchans; i++) { + for(unsigned int i = 0; i < d_twox*d_numchans; i++) { delete d_filters[i]; } } void -gr_pfb_synthesis_filterbank_ccf::set_taps (const std::vector<float> &taps) +gr_pfb_synthesis_filterbank_ccf::set_taps(const std::vector<float> &taps) +{ + gruel::scoped_lock guard(d_mutex); + if(d_twox == 1) + set_taps1(taps); + else + set_taps2(taps); +} + +void +gr_pfb_synthesis_filterbank_ccf::set_taps1(const std::vector<float> &taps) { unsigned int i,j; @@ -106,10 +127,62 @@ gr_pfb_synthesis_filterbank_ccf::set_taps (const std::vector<float> &taps) } void +gr_pfb_synthesis_filterbank_ccf::set_taps2 (const std::vector<float> &taps) +{ + unsigned int i,j; + int state = 0; + + unsigned int ntaps = taps.size(); + d_taps_per_filter = (unsigned int)ceil((double)ntaps/(double)d_numchans); + + // Create d_numchan vectors to store each channel's taps + d_taps.resize(d_twox*d_numchans); + + // Make a vector of the taps plus fill it out with 0's to fill + // each polyphase filter with exactly d_taps_per_filter + std::vector<float> tmp_taps; + tmp_taps = taps; + while((float)(tmp_taps.size()) < d_numchans*d_taps_per_filter) { + tmp_taps.push_back(0.0); + } + + // Partition the filter + for(i = 0; i < d_numchans; i++) { + // Each channel uses all d_taps_per_filter with 0's if not enough taps to fill out + d_taps[i] = std::vector<float>(d_taps_per_filter, 0); + d_taps[d_numchans+i] = std::vector<float>(d_taps_per_filter, 0); + state = 0; + for(j = 0; j < d_taps_per_filter; j++) { + // add taps to channels in reverse order + // Zero out every other tap + if(state == 0) { + d_taps[i][j] = tmp_taps[i + j*d_numchans]; + d_taps[d_numchans + i][j] = 0; + state = 1; + } + else { + d_taps[i][j] = 0; + d_taps[d_numchans + i][j] = tmp_taps[i + j*d_numchans]; + state = 0; + } + } + + // Build a filter for each channel and add it's taps to it + d_filters[i]->set_taps(d_taps[i]); + d_filters[d_numchans + i]->set_taps(d_taps[d_numchans + i]); + } + + // Set the history to ensure enough input items for each filter + set_history (d_taps_per_filter+1); + + d_updated = true; +} + +void gr_pfb_synthesis_filterbank_ccf::print_taps() { unsigned int i, j; - for(i = 0; i < d_numchans; i++) { + for(i = 0; i < d_twox*d_numchans; i++) { printf("filter[%d]: [", i); for(j = 0; j < d_taps_per_filter; j++) { printf(" %.4e", d_taps[i][j]); @@ -119,16 +192,43 @@ gr_pfb_synthesis_filterbank_ccf::print_taps() } +std::vector< std::vector<float> > +gr_pfb_synthesis_filterbank_ccf::taps() const +{ + return d_taps; +} + +void +gr_pfb_synthesis_filterbank_ccf::set_channel_map(const std::vector<int> &map) +{ + gruel::scoped_lock guard(d_mutex); + + unsigned int max = (unsigned int)*std::max_element(map.begin(), map.end()); + unsigned int min = (unsigned int)*std::min_element(map.begin(), map.end()); + if((max >= d_twox*d_numchans) || (min < 0)) { + throw std::invalid_argument("gr_pfb_synthesis_filterbank_ccf::set_channel_map: map range out of bounds.\n"); + } + d_channel_map = map; + + // Zero out fft buffer so that unused channels are always 0 + memset(d_fft->get_inbuf(), 0,d_twox*d_numchans*sizeof(gr_complex)); +} + +std::vector<int> +gr_pfb_synthesis_filterbank_ccf::channel_map() const +{ + return d_channel_map; +} + int gr_pfb_synthesis_filterbank_ccf::work (int noutput_items, gr_vector_const_void_star &input_items, gr_vector_void_star &output_items) { + gruel::scoped_lock guard(d_mutex); + gr_complex *in = (gr_complex*) input_items[0]; gr_complex *out = (gr_complex *) output_items[0]; - int numsigs = input_items.size(); - int ndiff = d_numchans - numsigs; - unsigned int nhalf = (unsigned int)ceil((float)numsigs/2.0f); if (d_updated) { d_updated = false; @@ -136,33 +236,48 @@ gr_pfb_synthesis_filterbank_ccf::work (int noutput_items, } unsigned int n, i; - for(n = 0; n < noutput_items/d_numchans; n++) { - // fill up the populated channels based on the - // number of real input streams - for(i = 0; i < nhalf; i++) { - in = (gr_complex*)input_items[i]; - d_fft->get_inbuf()[i] = (in+i)[n]; - } - - // Make the ndiff channels around N/2 0 - for(; i < nhalf+ndiff; i++) { - d_fft->get_inbuf()[i] = gr_complex(0,0); - } + size_t ninputs = input_items.size(); - // Finish off channels with data - for(; i < d_numchans; i++) { - in = (gr_complex*)input_items[i-ndiff]; - d_fft->get_inbuf()[i] = (in+i)[n]; + // Algoritm for critically sampled channels + if(d_twox == 1) { + for(n = 0; n < noutput_items/d_numchans; n++) { + for(i = 0; i < ninputs; i++) { + in = (gr_complex*)input_items[i]; + d_fft->get_inbuf()[d_channel_map[i]] = in[n]; + } + + // spin through IFFT + d_fft->execute(); + + for(i = 0; i < d_numchans; i++) { + out[i] = d_filters[i]->filter(d_fft->get_outbuf()[i]); + } + out += d_numchans; } - - // spin through IFFT - d_fft->execute(); - - for(i = 0; i < d_numchans; i++) { - out[d_numchans-i-1] = d_filters[d_numchans-i-1]->filter(d_fft->get_outbuf()[i]); + } + + // Algorithm for oversampling by 2x + else { + for(n = 0; n < noutput_items/d_numchans; n++) { + for(i = 0; i < ninputs; i++) { + in = (gr_complex*)input_items[i]; + d_fft->get_inbuf()[d_channel_map[i]] = in[n]; + } + + // spin through IFFT + d_fft->execute(); + + // Output is sum of two filters, but the input buffer to the filters must be circularly + // shifted by numchans every time through, done by using d_state to determine which IFFT + // buffer position to pull from. + for(i = 0; i < d_numchans; i++) { + out[i] = d_filters[i]->filter(d_fft->get_outbuf()[d_state*d_numchans+i]); + out[i] += d_filters[d_numchans+i]->filter(d_fft->get_outbuf()[(d_state^1)*d_numchans+i]); + } + d_state ^= 1; + + out += d_numchans; } - - out += d_numchans; } return noutput_items; diff --git a/gnuradio-core/src/lib/filter/gr_pfb_synthesis_filterbank_ccf.h b/gnuradio-core/src/lib/filter/gr_pfb_synthesis_filterbank_ccf.h index 1f772b1dd..d7f9d26c7 100644 --- a/gnuradio-core/src/lib/filter/gr_pfb_synthesis_filterbank_ccf.h +++ b/gnuradio-core/src/lib/filter/gr_pfb_synthesis_filterbank_ccf.h @@ -27,11 +27,12 @@ #include <gr_core_api.h> #include <gr_sync_interpolator.h> #include <gri_fir_filter_with_buffer_ccf.h> +#include <gruel/thread.h> class gr_pfb_synthesis_filterbank_ccf; typedef boost::shared_ptr<gr_pfb_synthesis_filterbank_ccf> gr_pfb_synthesis_filterbank_ccf_sptr; GR_CORE_API gr_pfb_synthesis_filterbank_ccf_sptr gr_make_pfb_synthesis_filterbank_ccf - (unsigned int numchans, const std::vector<float> &taps); + (unsigned int numchans, const std::vector<float> &taps, bool twox=false); class gri_fft_complex; @@ -55,9 +56,10 @@ class GR_CORE_API gr_pfb_synthesis_filterbank_ccf : public gr_sync_interpolator channels <EM>M</EM> * \param taps (vector/list of floats) The prototype filter to populate the filterbank. + * \param twox (bool) use 2x oversampling or not (default is no) */ friend GR_CORE_API gr_pfb_synthesis_filterbank_ccf_sptr gr_make_pfb_synthesis_filterbank_ccf - (unsigned int numchans, const std::vector<float> &taps); + (unsigned int numchans, const std::vector<float> &taps, bool twox); bool d_updated; unsigned int d_numchans; @@ -65,7 +67,20 @@ class GR_CORE_API gr_pfb_synthesis_filterbank_ccf : public gr_sync_interpolator gri_fft_complex *d_fft; std::vector< gri_fir_filter_with_buffer_ccf*> d_filters; std::vector< std::vector<float> > d_taps; + int d_state; + std::vector<int> d_channel_map; + unsigned int d_twox; + gruel::mutex d_mutex; // mutex to protect set/work access + /*! + * \brief Tap setting algorithm for critically sampled channels + */ + void set_taps1(const std::vector<float> &taps); + + /*! + * \brief Tap setting algorithm for 2x over-sampled channels + */ + void set_taps2(const std::vector<float> &taps); /*! * Build the polyphase synthesis filterbank. @@ -73,9 +88,11 @@ class GR_CORE_API gr_pfb_synthesis_filterbank_ccf : public gr_sync_interpolator channels <EM>M</EM> * \param taps (vector/list of floats) The prototype filter to populate the filterbank. + * \param twox (bool) use 2x oversampling or not (default is no) */ gr_pfb_synthesis_filterbank_ccf (unsigned int numchans, - const std::vector<float> &taps); + const std::vector<float> &taps, + bool twox); public: ~gr_pfb_synthesis_filterbank_ccf (); @@ -91,6 +108,36 @@ public: * Print all of the filterbank taps to screen. */ void print_taps(); + + /*! + * Return a vector<vector<>> of the filterbank taps + */ + std::vector<std::vector<float> > taps() const; + + /*! + * Set the channel map. Channels are numbers as: + * N/2+1 | ... | N-1 | 0 | 1 | 2 | ... | N/2 + * <------------------- 0 --------------------> + * freq + * + * So input stream 0 goes to channel 0, etc. Setting a new channel + * map allows the user to specify where in frequency he/she wants + * the input stream to go. This is especially useful to avoid + * putting signals into the channels on the edge of the spectrum + * which can either wrap around (in the case of odd number of + * channels) and be affected by filter rolloff in the transmitter. + * + * The map must be at least the number of streams being sent to the + * block. Less and the algorithm will not have enough data to + * properly setup the buffers. Any more channels specified will be + * ignored. + */ + void set_channel_map(const std::vector<int> &map); + + /*! + * Gets the current channel map. + */ + std::vector<int> channel_map() const; int work (int noutput_items, gr_vector_const_void_star &input_items, diff --git a/gnuradio-core/src/lib/filter/gr_pfb_synthesis_filterbank_ccf.i b/gnuradio-core/src/lib/filter/gr_pfb_synthesis_filterbank_ccf.i index 02a9f0255..c24abecf0 100644 --- a/gnuradio-core/src/lib/filter/gr_pfb_synthesis_filterbank_ccf.i +++ b/gnuradio-core/src/lib/filter/gr_pfb_synthesis_filterbank_ccf.i @@ -23,16 +23,22 @@ GR_SWIG_BLOCK_MAGIC(gr,pfb_synthesis_filterbank_ccf); gr_pfb_synthesis_filterbank_ccf_sptr gr_make_pfb_synthesis_filterbank_ccf - (unsigned int numchans, const std::vector<float> &taps); + (unsigned int numchans, const std::vector<float> &taps, bool twox=false); class gr_pfb_synthesis_filterbank_ccf : public gr_sync_interpolator { private: gr_pfb_synthesis_filterbank_ccf (unsigned int numchans, - const std::vector<float> &taps); + const std::vector<float> &taps, + bool twox=false); public: ~gr_pfb_synthesis_filterbank_ccf (); void set_taps (const std::vector<float> &taps); + void print_taps(); + std::vector< std::vector<float> > taps() const; + + void set_channel_map(const std::vector<int> &map); + std::vector<int> channel_map() const; }; diff --git a/gnuradio-core/src/python/gnuradio/blks2impl/pfb_channelizer.py b/gnuradio-core/src/python/gnuradio/blks2impl/pfb_channelizer.py index 3ddc1749a..dea71b286 100644 --- a/gnuradio-core/src/python/gnuradio/blks2impl/pfb_channelizer.py +++ b/gnuradio-core/src/python/gnuradio/blks2impl/pfb_channelizer.py @@ -34,7 +34,7 @@ class pfb_channelizer_ccf(gr.hier_block2): gr.io_signature(1, 1, gr.sizeof_gr_complex), # Input signature gr.io_signature(numchans, numchans, gr.sizeof_gr_complex)) # Output signature - self._numchans = numchans + self._nchans = numchans self._oversample_rate = oversample_rate if taps is not None: @@ -47,7 +47,7 @@ class pfb_channelizer_ccf(gr.hier_block2): made = False while not made: try: - self._taps = optfir.low_pass(1, self._numchans, bw, bw+tb, ripple, atten) + self._taps = optfir.low_pass(1, self._nchans, bw, bw+tb, ripple, atten) made = True except RuntimeError: ripple += 0.01 @@ -58,22 +58,16 @@ class pfb_channelizer_ccf(gr.hier_block2): if(ripple >= 1.0): raise RuntimeError("optfir could not generate an appropriate filter.") - self.s2ss = gr.stream_to_streams(gr.sizeof_gr_complex, self._numchans) - self.pfb = gr.pfb_channelizer_ccf(self._numchans, self._taps, + self.s2ss = gr.stream_to_streams(gr.sizeof_gr_complex, self._nchans) + self.pfb = gr.pfb_channelizer_ccf(self._nchans, self._taps, self._oversample_rate) - self.v2s = gr.vector_to_streams(gr.sizeof_gr_complex, self._numchans) - self.connect(self, self.s2ss) - for i in xrange(self._numchans): + for i in xrange(self._nchans): self.connect((self.s2ss,i), (self.pfb,i)) + self.connect((self.pfb,i), (self,i)) - # Get independent streams from the filterbank and send them out - self.connect(self.pfb, self.v2s) - - for i in xrange(self._numchans): - self.connect((self.v2s,i), (self,i)) - - + def set_channel_map(self, newmap): + self.pfb.set_channel_map(newmap) diff --git a/gnuradio-examples/python/pfb/CMakeLists.txt b/gnuradio-examples/python/pfb/CMakeLists.txt index 55dbb16ac..88fdf2ead 100644 --- a/gnuradio-examples/python/pfb/CMakeLists.txt +++ b/gnuradio-examples/python/pfb/CMakeLists.txt @@ -29,6 +29,7 @@ GR_PYTHON_INSTALL(PROGRAMS resampler.py synth_filter.py synth_to_chan.py + reconstruction.py DESTINATION ${GR_PKG_DATA_DIR}/examples/pfb COMPONENT "gnuradio_examples" ) diff --git a/gnuradio-examples/python/pfb/channelize.py b/gnuradio-examples/python/pfb/channelize.py index 999e5d20e..2fcb14a36 100755 --- a/gnuradio-examples/python/pfb/channelize.py +++ b/gnuradio-examples/python/pfb/channelize.py @@ -68,7 +68,7 @@ class pfb_top_block(gr.top_block): self.head = gr.head(gr.sizeof_gr_complex, self._N) # Construct the channelizer filter - self.pfb = blks2.pfb_channelizer_ccf(self._M, self._taps) + self.pfb = blks2.pfb_channelizer_ccf(self._M, self._taps, 1) # Construct a vector sink for the input signal to the channelizer self.snk_i = gr.vector_sink_c() @@ -77,6 +77,9 @@ class pfb_top_block(gr.top_block): self.connect(self.add, self.head, self.pfb) self.connect(self.add, self.snk_i) + # Use this to play with the channel mapping + #self.pfb.set_channel_map([5,6,7,8,0,1,2,3,4]) + # Create a vector sink for each of M output channels of the filter and connect it self.snks = list() for i in xrange(self._M): diff --git a/gnuradio-examples/python/pfb/reconstruction.py b/gnuradio-examples/python/pfb/reconstruction.py new file mode 100755 index 000000000..2b6f9a831 --- /dev/null +++ b/gnuradio-examples/python/pfb/reconstruction.py @@ -0,0 +1,131 @@ +#!/usr/bin/env python + +import scipy, math, pylab +from scipy import fftpack +from gnuradio import gr, digital, blks2 + +fftlen = 8192 + +def main(): + N = 10000 + fs = 2000.0 + Ts = 1.0/fs + t = scipy.arange(0, N*Ts, Ts) + + # When playing with the number of channels, be careful about the filter + # specs and the channel map of the synthesizer set below. + nchans = 10 + + # Build the filter(s) + bw = 1000 + tb = 400 + proto_taps = gr.firdes.low_pass_2(1, nchans*fs, bw, tb, 80, + gr.firdes.WIN_BLACKMAN_hARRIS) + print "Filter length: ", len(proto_taps) + + + # Create a modulated signal + npwr = 0.01 + data = scipy.random.randint(0, 256, N) + rrc_taps = gr.firdes.root_raised_cosine(1, 2, 1, 0.35, 41) + + src = gr.vector_source_b(data.astype(scipy.uint8).tolist(), False) + mod = digital.bpsk_mod(samples_per_symbol=2) + chan = gr.channel_model(npwr) + rrc = gr.fft_filter_ccc(1, rrc_taps) + + # Split it up into pieces + channelizer = blks2.pfb_channelizer_ccf(nchans, proto_taps, 2) + + # Put the pieces back together again + syn_taps = [nchans*t for t in proto_taps] + synthesizer = gr.pfb_synthesis_filterbank_ccf(nchans, syn_taps, True) + src_snk = gr.vector_sink_c() + snk = gr.vector_sink_c() + + # Remap the location of the channels + # Can be done in synth or channelizer (watch out for rotattions in + # the channelizer) + synthesizer.set_channel_map([ 0, 1, 2, 3, 4, + 15, 16, 17, 18, 19]) + + tb = gr.top_block() + tb.connect(src, mod, chan, rrc, channelizer) + tb.connect(rrc, src_snk) + + vsnk = [] + for i in xrange(nchans): + tb.connect((channelizer,i), (synthesizer, i)) + + vsnk.append(gr.vector_sink_c()) + tb.connect((channelizer,i), vsnk[i]) + + tb.connect(synthesizer, snk) + tb.run() + + sin = scipy.array(src_snk.data()[1000:]) + sout = scipy.array(snk.data()[1000:]) + + + # Plot original signal + fs_in = nchans*fs + f1 = pylab.figure(1, figsize=(16,12), facecolor='w') + s11 = f1.add_subplot(2,2,1) + s11.psd(sin, NFFT=fftlen, Fs=fs_in) + s11.set_title("PSD of Original Signal") + s11.set_ylim([-200, -20]) + + s12 = f1.add_subplot(2,2,2) + s12.plot(sin.real[1000:1500], "o-b") + s12.plot(sin.imag[1000:1500], "o-r") + s12.set_title("Original Signal in Time") + + start = 1 + skip = 4 + s13 = f1.add_subplot(2,2,3) + s13.plot(sin.real[start::skip], sin.imag[start::skip], "o") + s13.set_title("Constellation") + s13.set_xlim([-2, 2]) + s13.set_ylim([-2, 2]) + + # Plot channels + nrows = int(scipy.sqrt(nchans)) + ncols = int(scipy.ceil(float(nchans)/float(nrows))) + + f2 = pylab.figure(2, figsize=(16,12), facecolor='w') + for n in xrange(nchans): + s = f2.add_subplot(nrows, ncols, n+1) + s.psd(vsnk[n].data(), NFFT=fftlen, Fs=fs_in) + s.set_title("Channel {0}".format(n)) + s.set_ylim([-200, -20]) + + # Plot reconstructed signal + fs_out = 2*nchans*fs + f3 = pylab.figure(3, figsize=(16,12), facecolor='w') + s31 = f3.add_subplot(2,2,1) + s31.psd(sout, NFFT=fftlen, Fs=fs_out) + s31.set_title("PSD of Reconstructed Signal") + s31.set_ylim([-200, -20]) + + s32 = f3.add_subplot(2,2,2) + s32.plot(sout.real[1000:1500], "o-b") + s32.plot(sout.imag[1000:1500], "o-r") + s32.set_title("Reconstructed Signal in Time") + + start = 2 + skip = 4 + s33 = f3.add_subplot(2,2,3) + s33.plot(sout.real[start::skip], sout.imag[start::skip], "o") + s33.set_title("Constellation") + s33.set_xlim([-2, 2]) + s33.set_ylim([-2, 2]) + + pylab.show() + + +if __name__ == "__main__": + try: + main() + except KeyboardInterrupt: + pass + diff --git a/grc/blocks/blks2_pfb_channelizer.xml b/grc/blocks/blks2_pfb_channelizer.xml index aee9dd512..5a1b20edb 100644 --- a/grc/blocks/blks2_pfb_channelizer.xml +++ b/grc/blocks/blks2_pfb_channelizer.xml @@ -18,6 +18,8 @@ <!-- Set taps not implemented yet <callback>set_taps($taps)</callback> --> + <callback>set_channel_map(ch_$map)</callback> + <param> <name>Channels</name> <key>nchans</key> @@ -41,6 +43,11 @@ <value>100</value> <type>real</type> </param> + <param> + <name>Channel Map</name> + <key>ch_map</key> + <type>int_vector</type> + </param> <sink> <name>in</name> <type>complex</type> diff --git a/grc/blocks/gr_pfb_synthesis_filterbank.xml b/grc/blocks/gr_pfb_synthesis_filterbank.xml index a8b944c6a..6ea54632c 100644 --- a/grc/blocks/gr_pfb_synthesis_filterbank.xml +++ b/grc/blocks/gr_pfb_synthesis_filterbank.xml @@ -10,9 +10,10 @@ <import>from gnuradio import gr</import> <import>from gnuradio.gr import firdes</import> <make>gr.pfb_synthesis_filterbank_ccf( - $numchans, $taps) + $numchans, $taps, $twox) </make> <callback>set_taps($taps)</callback> + <callback>set_channel_map($ch_map)</callback> <param> <name>Channels</name> @@ -31,6 +32,17 @@ <key>taps</key> <type>real_vector</type> </param> + <param> + <name>2x Sample Rate</name> + <key>twox</key> + <value>False</value> + <type>bool</type> + </param> + <param> + <name>Channel Map</name> + <key>ch_map</key> + <type>int_vector</type> + </param> <sink> <name>in</name> <type>complex</type> |