summaryrefslogtreecommitdiff
path: root/gr-radio-astronomy/src
diff options
context:
space:
mode:
authorJosh Blum2011-10-19 16:37:33 -0700
committerJosh Blum2011-10-19 16:37:33 -0700
commitbe300d920fe1b7a3eb738565cddd10624ec62a75 (patch)
tree45bb49c4a4acd7c93bb218c84b94de4c90f198c5 /gr-radio-astronomy/src
parenta57f7484a1b1ba18b66334675ce6458b00d40626 (diff)
parente30b824e9165bff69f09121631c3d5a706cbbd39 (diff)
downloadgnuradio-be300d920fe1b7a3eb738565cddd10624ec62a75.tar.gz
gnuradio-be300d920fe1b7a3eb738565cddd10624ec62a75.tar.bz2
gnuradio-be300d920fe1b7a3eb738565cddd10624ec62a75.zip
Merge branch 'next' of http://gnuradio.org/git/gnuradio into next
Diffstat (limited to 'gr-radio-astronomy/src')
-rw-r--r--gr-radio-astronomy/src/.gitignore10
-rw-r--r--gr-radio-astronomy/src/Makefile.am25
-rw-r--r--gr-radio-astronomy/src/lib/.gitignore16
-rw-r--r--gr-radio-astronomy/src/lib/Makefile.am35
-rw-r--r--gr-radio-astronomy/src/lib/Makefile.swig.gen145
-rw-r--r--gr-radio-astronomy/src/lib/ra.i67
-rw-r--r--gr-radio-astronomy/src/python/.gitignore9
-rw-r--r--gr-radio-astronomy/src/python/Makefile.am56
-rwxr-xr-xgr-radio-astronomy/src/python/local_calibrator.py195
-rwxr-xr-xgr-radio-astronomy/src/python/qa_ra.py38
-rwxr-xr-xgr-radio-astronomy/src/python/ra_fftsink.py501
-rwxr-xr-xgr-radio-astronomy/src/python/ra_stripchartsink.py400
-rwxr-xr-xgr-radio-astronomy/src/python/ra_waterfallsink.py646
-rw-r--r--gr-radio-astronomy/src/python/run_tests.in10
-rw-r--r--gr-radio-astronomy/src/python/usrp_psr_receiver.help111
-rwxr-xr-xgr-radio-astronomy/src/python/usrp_psr_receiver.py1096
-rw-r--r--gr-radio-astronomy/src/python/usrp_ra_receiver.help90
-rwxr-xr-xgr-radio-astronomy/src/python/usrp_ra_receiver.py1384
18 files changed, 0 insertions, 4834 deletions
diff --git a/gr-radio-astronomy/src/.gitignore b/gr-radio-astronomy/src/.gitignore
deleted file mode 100644
index bb3f27777..000000000
--- a/gr-radio-astronomy/src/.gitignore
+++ /dev/null
@@ -1,10 +0,0 @@
-/Makefile
-/Makefile.in
-/.la
-/.lo
-/.deps
-/.libs
-/*.la
-/*.lo
-/howto.cc
-/howto.py
diff --git a/gr-radio-astronomy/src/Makefile.am b/gr-radio-astronomy/src/Makefile.am
deleted file mode 100644
index be38b7c1a..000000000
--- a/gr-radio-astronomy/src/Makefile.am
+++ /dev/null
@@ -1,25 +0,0 @@
-#
-# Copyright 2004 Free Software Foundation, Inc.
-#
-# This file is part of GNU Radio
-#
-# GNU Radio is free software; you can redistribute it and/or modify
-# it under the terms of the GNU General Public License as published by
-# the Free Software Foundation; either version 3, or (at your option)
-# any later version.
-#
-# GNU Radio is distributed in the hope that it will be useful,
-# but WITHOUT ANY WARRANTY; without even the implied warranty of
-# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-# GNU General Public License for more details.
-#
-# You should have received a copy of the GNU General Public License
-# along with GNU Radio; see the file COPYING. If not, write to
-# the Free Software Foundation, Inc., 51 Franklin Street,
-# Boston, MA 02110-1301, USA.
-#
-
-SUBDIRS = lib
-if PYTHON
-SUBDIRS += python
-endif
diff --git a/gr-radio-astronomy/src/lib/.gitignore b/gr-radio-astronomy/src/lib/.gitignore
deleted file mode 100644
index 711bfef2c..000000000
--- a/gr-radio-astronomy/src/lib/.gitignore
+++ /dev/null
@@ -1,16 +0,0 @@
-/Makefile
-/Makefile.in
-/.la
-/.lo
-/.deps
-/.libs
-/*.la
-/*.lo
-/howto.cc
-/howto.py
-/ra.cc
-/ra.py
-/*.pyc
-/gnuradio
-/guile
-/python
diff --git a/gr-radio-astronomy/src/lib/Makefile.am b/gr-radio-astronomy/src/lib/Makefile.am
deleted file mode 100644
index 1b6b854ea..000000000
--- a/gr-radio-astronomy/src/lib/Makefile.am
+++ /dev/null
@@ -1,35 +0,0 @@
-#
-# Copyright 2004,2005,2006,2008,2009,2010 Free Software Foundation, Inc.
-#
-# This file is part of GNU Radio
-#
-# GNU Radio is free software; you can redistribute it and/or modify
-# it under the terms of the GNU General Public License as published by
-# the Free Software Foundation; either version 3, or (at your option)
-# any later version.
-#
-# GNU Radio is distributed in the hope that it will be useful,
-# but WITHOUT ANY WARRANTY; without even the implied warranty of
-# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-# GNU General Public License for more details.
-#
-# You should have received a copy of the GNU General Public License
-# along with GNU Radio; see the file COPYING. If not, write to
-# the Free Software Foundation, Inc., 51 Franklin Street,
-# Boston, MA 02110-1301, USA.
-#
-
-include $(top_srcdir)/Makefile.common
-include $(top_srcdir)/Makefile.swig
-
-AM_CPPFLAGS = $(STD_DEFINES_AND_INCLUDES) $(PYTHON_CPPFLAGS) $(WITH_INCLUDES)
-
-TOP_SWIG_IFILES = \
- ra.i
-
-# Install so that they end up available as:
-# import gnuradio.ra
-# This ends up at:
-# ${prefix}/lib/python${python_version}/site-packages/gnuradio
-ra_pythondir_category = \
- gnuradio
diff --git a/gr-radio-astronomy/src/lib/Makefile.swig.gen b/gr-radio-astronomy/src/lib/Makefile.swig.gen
deleted file mode 100644
index faad880cf..000000000
--- a/gr-radio-astronomy/src/lib/Makefile.swig.gen
+++ /dev/null
@@ -1,145 +0,0 @@
-# -*- Makefile -*-
-#
-# Copyright 2009 Free Software Foundation, Inc.
-#
-# This file is part of GNU Radio
-#
-# GNU Radio is free software; you can redistribute it and/or modify
-# it under the terms of the GNU General Public License as published by
-# the Free Software Foundation; either version 3, or (at your option)
-# any later version.
-#
-# GNU Radio is distributed in the hope that it will be useful,
-# but WITHOUT ANY WARRANTY; without even the implied warranty of
-# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-# GNU General Public License for more details.
-#
-# You should have received a copy of the GNU General Public License
-# along with GNU Radio; see the file COPYING. If not, write to
-# the Free Software Foundation, Inc., 51 Franklin Street,
-# Boston, MA 02110-1301, USA.
-#
-
-# Makefile.swig.gen for ra.i
-
-## Default install locations for these files:
-##
-## Default location for the Python directory is:
-## ${prefix}/lib/python${python_version}/site-packages/[category]/ra
-## Default location for the Python exec directory is:
-## ${exec_prefix}/lib/python${python_version}/site-packages/[category]/ra
-##
-## The following can be overloaded to change the install location, but
-## this has to be done in the including Makefile.am -before-
-## Makefile.swig is included.
-
-ra_pythondir_category ?= gnuradio/ra
-ra_pylibdir_category ?= $(ra_pythondir_category)
-ra_pythondir = $(pythondir)/$(ra_pythondir_category)
-ra_pylibdir = $(pyexecdir)/$(ra_pylibdir_category)
-
-# The .so libraries for the guile modules get installed whereever guile
-# is installed, usually /usr/lib/guile/gnuradio/
-# FIXME: determince whether these should be installed with gnuradio.
-ra_scmlibdir = $(libdir)
-
-# The scm files for the guile modules get installed where ever guile
-# is installed, usually /usr/share/guile/site/ra
-# FIXME: determince whether these should be installed with gnuradio.
-ra_scmdir = $(guiledir)
-
-## SWIG headers are always installed into the same directory.
-
-ra_swigincludedir = $(swigincludedir)
-
-## This is a template file for a "generated" Makefile addition (in
-## this case, "Makefile.swig.gen"). By including the top-level
-## Makefile.swig, this file will be used to generate the SWIG
-## dependencies. Assign the variable TOP_SWIG_FILES to be the list of
-## SWIG .i files to generated wrappings for; there can be more than 1
-## so long as the names are unique (no sorting is done on the
-## TOP_SWIG_FILES list). This file explicitly assumes that a SWIG .i
-## file will generate .cc, .py, and possibly .h files -- meaning that
-## all of these files will have the same base name (that provided for
-## the SWIG .i file).
-##
-## This code is setup to ensure parallel MAKE ("-j" or "-jN") does the
-## right thing. For more info, see <
-## http://sources.redhat.com/automake/automake.html#Multiple-Outputs >
-
-## Other cleaned files: dependency files generated by SWIG or this Makefile
-
-MOSTLYCLEANFILES += $(DEPDIR)/*.S*
-
-## Various SWIG variables. These can be overloaded in the including
-## Makefile.am by setting the variable value there, then including
-## Makefile.swig .
-
-ra_swiginclude_HEADERS = \
- ra.i \
- $(ra_swiginclude_headers)
-
-if PYTHON
-ra_pylib_LTLIBRARIES = \
- _ra.la
-
-_ra_la_SOURCES = \
- python/ra.cc \
- $(ra_la_swig_sources)
-
-ra_python_PYTHON = \
- ra.py \
- $(ra_python)
-
-_ra_la_LIBADD = \
- $(STD_SWIG_LA_LIB_ADD) \
- $(ra_la_swig_libadd)
-
-_ra_la_LDFLAGS = \
- $(STD_SWIG_LA_LD_FLAGS) \
- $(ra_la_swig_ldflags)
-
-_ra_la_CXXFLAGS = \
- $(STD_SWIG_CXX_FLAGS) \
- -I$(top_builddir) \
- $(ra_la_swig_cxxflags)
-
-python/ra.cc: ra.py
-ra.py: ra.i
-
-# Include the python dependencies for this file
--include python/ra.d
-
-endif # end of if python
-
-if GUILE
-
-ra_scmlib_LTLIBRARIES = \
- libguile-gnuradio-ra.la
-libguile_gnuradio_ra_la_SOURCES = \
- guile/ra.cc \
- $(ra_la_swig_sources)
-nobase_ra_scm_DATA = \
- gnuradio/ra.scm \
- gnuradio/ra-primitive.scm
-libguile_gnuradio_ra_la_LIBADD = \
- $(STD_SWIG_LA_LIB_ADD) \
- $(ra_la_swig_libadd)
-libguile_gnuradio_ra_la_LDFLAGS = \
- $(STD_SWIG_LA_LD_FLAGS) \
- $(ra_la_swig_ldflags)
-libguile_gnuradio_ra_la_CXXFLAGS = \
- $(STD_SWIG_CXX_FLAGS) \
- -I$(top_builddir) \
- $(ra_la_swig_cxxflags)
-
-guile/ra.cc: gnuradio/ra.scm
-gnuradio/ra.scm: ra.i
-gnuradio/ra-primitive.scm: gnuradio/ra.scm
-
-# Include the guile dependencies for this file
--include guile/ra.d
-
-endif # end of GUILE
-
-
diff --git a/gr-radio-astronomy/src/lib/ra.i b/gr-radio-astronomy/src/lib/ra.i
deleted file mode 100644
index 3e8f409e3..000000000
--- a/gr-radio-astronomy/src/lib/ra.i
+++ /dev/null
@@ -1,67 +0,0 @@
-/* -*- c++ -*- */
-/*
- * Copyright 2009 Free Software Foundation, Inc.
- *
- * This file is part of GNU Radio
- *
- * GNU Radio is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 3, or (at your option)
- * any later version.
- *
- * GNU Radio is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with GNU Radio; see the file COPYING. If not, write to
- * the Free Software Foundation, Inc., 51 Franklin Street,
- * Boston, MA 02110-1301, USA.
- */
-
-%include "gnuradio.i" // the common stuff
-
-// We'll need something like this if we add C++ blocks...
-// See the gr-howto-write-a-block tarball for examples
-
-// ----------------------------------------------------------------
-
-/*
- * First arg is the package prefix.
- * Second arg is the name of the class minus the prefix.
- *
- * This does some behind-the-scenes magic so we can
- * access ra_square_ff from python as ra.square_ff
- */
-// GR_SWIG_BLOCK_MAGIC(ra,square_ff);
-
-// ra_square_ff_sptr ra_make_square_ff ();
-//
-// class ra_square_ff : public gr_block
-// {
-// private:
-// ra_square_ff ();
-// };
-//
-// // ----------------------------------------------------------------
-//
-// GR_SWIG_BLOCK_MAGIC(ra,square2_ff);
-//
-// ra_square2_ff_sptr ra_make_square2_ff ();
-//
-// class ra_square2_ff : public gr_sync_block
-// {
-// private:
-// ra_square2_ff ();
-// };
-
-#if SWIGGUILE
-%scheme %{
-(load-extension-global "libguile-gnuradio-ra" "scm_init_gnuradio_ra_module")
-%}
-
-%goops %{
-(use-modules (gnuradio gnuradio_core_runtime))
-%}
-#endif
diff --git a/gr-radio-astronomy/src/python/.gitignore b/gr-radio-astronomy/src/python/.gitignore
deleted file mode 100644
index bf03975bb..000000000
--- a/gr-radio-astronomy/src/python/.gitignore
+++ /dev/null
@@ -1,9 +0,0 @@
-/Makefile
-/Makefile.in
-/.deps
-/.libs
-/*.la
-/*.lo
-/*.pyc
-/*.pyo
-/run_tests
diff --git a/gr-radio-astronomy/src/python/Makefile.am b/gr-radio-astronomy/src/python/Makefile.am
deleted file mode 100644
index 2518e0647..000000000
--- a/gr-radio-astronomy/src/python/Makefile.am
+++ /dev/null
@@ -1,56 +0,0 @@
-#
-# Copyright 2004,2006,2009 Free Software Foundation, Inc.
-#
-# This file is part of GNU Radio
-#
-# GNU Radio is free software; you can redistribute it and/or modify
-# it under the terms of the GNU General Public License as published by
-# the Free Software Foundation; either version 3, or (at your option)
-# any later version.
-#
-# GNU Radio is distributed in the hope that it will be useful,
-# but WITHOUT ANY WARRANTY; without even the implied warranty of
-# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-# GNU General Public License for more details.
-#
-# You should have received a copy of the GNU General Public License
-# along with GNU Radio; see the file COPYING. If not, write to
-# the Free Software Foundation, Inc., 51 Franklin Street,
-# Boston, MA 02110-1301, USA.
-#
-
-include $(top_srcdir)/Makefile.common
-
-# Install this stuff so that it ends up as the gnuradio.ra module
-# This usually ends up at:
-# ${prefix}/lib/python${python_version}/site-packages/gnuradio
-
-ourpythondir = $(grpythondir)
-ourlibdir = $(grpyexecdir)
-
-# wxgui stuff here
-wxguipythondir = $(grpythondir)/wxgui
-wxguilibdir = $(grpyexecdir)/wxgui
-
-EXTRA_DIST += \
- run_tests.in
-
-TESTS = run_tests
-
-
-noinst_PYTHON = \
- qa_ra.py
-
-ourpython_PYTHON = \
- local_calibrator.py
-
-wxguipython_PYTHON = \
- ra_stripchartsink.py \
- ra_fftsink.py \
- ra_waterfallsink.py
-
-
-# and here for applications you want installed in prefix/bin
-dist_bin_SCRIPTS = \
- usrp_ra_receiver.py \
- usrp_psr_receiver.py
diff --git a/gr-radio-astronomy/src/python/local_calibrator.py b/gr-radio-astronomy/src/python/local_calibrator.py
deleted file mode 100755
index d76060c0f..000000000
--- a/gr-radio-astronomy/src/python/local_calibrator.py
+++ /dev/null
@@ -1,195 +0,0 @@
-#!/usr/bin/env python
-#
-# Copyright 2003,2004,2005 Free Software Foundation, Inc.
-#
-# This file is part of GNU Radio
-#
-# GNU Radio is free software; you can redistribute it and/or modify
-# it under the terms of the GNU General Public License as published by
-# the Free Software Foundation; either version 3, or (at your option)
-# any later version.
-#
-# GNU Radio is distributed in the hope that it will be useful,
-# but WITHOUT ANY WARRANTY; without even the implied warranty of
-# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-# GNU General Public License for more details.
-#
-# You should have received a copy of the GNU General Public License
-# along with GNU Radio; see the file COPYING. If not, write to
-# the Free Software Foundation, Inc., 51 Franklin Street,
-# Boston, MA 02110-1301, USA.
-#
-
-import Numeric
-import math
-import ephem
-import time
-
-#
-#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
-# NO LONGER USED
-#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
-#
-#
-
-
-#
-# Simple class for allowing local definition of a calibration function
-# for raw samples coming from the RA detector chain. Each observatory
-# is different, and rather than hacking up the main code in usrp_ra_receiver
-# we define the appropriate function here.
-#
-# For example, one could calibrate the output in Janskys, rather than
-# dB.
-#
-#
-
-def calib_default_total_power(data):
- r = 10.0*math.log10(data)
- return(r)
-
-def calib_numogate_ridge_observatory_total_power(data):
-
- me = ephem.Observer()
-
- #
- # PyEphem wants lat/long as strings, rather than floats--took me quite
- # a long time to figure that out. If they don't arrive as strings,
- # the calculations for sidereal time are complete garbage
- #
- me.long = globals()["calib_long"]
- me.lat = globals()["calib_lat"]
-
- me.date = ephem.now()
- sidtime = me.sidereal_time()
-
- foo = time.localtime()
- if not "calib_prefix" in globals():
- pfx = "./"
- else:
- pfx = globals()["calib_prefix"]
- filenamestr = "%s/%04d%02d%02d%02d" % (pfx, foo.tm_year,
- foo.tm_mon, foo.tm_mday, foo.tm_hour)
-
- numogate_file = open (filenamestr+".tpdat","a")
-
- r = (data / 409.6)
- flt = "%6.3f" % r
- #r = calib_default_total_power(data)
- inter = globals()["calib_decln"]
- integ = globals()["calib_integ_setting"]
- fc = globals()["calib_freq_setting"]
- fc = fc / 1000000
- bw = globals()["calib_bw_setting"]
- bw = bw / 1000000
- ga = globals()["calib_gain_setting"]
-
- now = time.time()
-
- if not "calib_then_tpdat" in globals():
- globals()["calib_then_tpdat"] = now
-
- if (now - globals()["calib_then_tpdat"]) >= 20:
- globals()["calib_then_tpdat"] = now
-
- numogate_file.write(str(ephem.hours(sidtime))+" "+flt+" Dn="+str(inter)+",")
- numogate_file.write("Ti="+str(integ)+",Fc="+str(fc)+",Bw="+str(bw))
- numogate_file.write(",Ga="+str(ga)+"\n")
- else:
- numogate_file.write(str(ephem.hours(sidtime))+" "+flt+"\n")
-
- numogate_file.close()
- return(r)
-
-def calib_numogate_ridge_observatory_fft(data,l):
-
- me = ephem.Observer()
-
- #
- # PyEphem wants lat/long as strings, rather than floats--took me quite
- # a long time to figure that out. If they don't arrive as strings,
- # the calculations for sidereal time are complete garbage
- #
- me.long = globals()["calib_long"]
- me.lat = globals()["calib_lat"]
-
- me.date = ephem.now()
- sidtime = me.sidereal_time()
-
- foo = time.localtime()
-
- if not "calib_prefix" in globals():
- pfx = "./"
- else:
- pfx = globals()["calib_prefix"]
- filenamestr = "%s/%04d%02d%02d%02d" % (pfx, foo.tm_year,
- foo.tm_mon, foo.tm_mday, foo.tm_hour)
-
- now = time.time()
-
- if not "calib_then" in globals():
- globals()["calib_then"] = now
-
- delta = (l/1024)*5
-
- if (now - globals()["calib_then"]) >= delta:
-
- globals()["calib_then"] = now
- numogate_file = open (filenamestr+".sdat","a")
-
- r = data
- inter = globals()["calib_decln"]
- fc = globals()["calib_freq_setting"]
- fc = fc / 1000000
- bw = globals()["calib_bw_setting"]
- bw = bw / 1000000
- av = globals()["calib_avg_alpha"]
- numogate_file.write("data:"+str(ephem.hours(sidtime))+" Dn="+str(inter)+",Fc="+str(fc)+",Bw="+str(bw)+",Av="+str(av))
- numogate_file.write(" "+str(r)+"\n")
- numogate_file.close()
- return(r)
-
- return(data)
-
-def calib_default_fft(db,l):
- return(db)
-
-#
-# We capture various parameters from the receive chain here, because
-# they can affect the calibration equations.
-#
-#
-def calib_set_gain(gain):
- globals()["calib_gain_setting"] = gain
- globals()["calib_then_tpdat"] = time.time() - 50
-
-def calib_set_integ(integ):
- globals()["calib_integ_setting"] = integ
- globals()["calib_then_tpdat"] = time.time() - 50
-
-def calib_set_bw(bw):
- globals()["calib_bw_setting"] = bw
- globals()["calib_then_tpdat"] = time.time() - 50
-
-def calib_set_freq(freq):
- globals()["calib_freq_setting"] = freq
- globals()["calib_then_tpdat"] = time.time() - 50
-
-def calib_set_avg_alpha(alpha):
- globals()["calib_avg_alpha"] = alpha
-
-def calib_set_interesting(inter):
- globals()["calib_is_interesting"] = inter
-
-def calib_set_decln(dec):
- globals()["calib_decln"] = dec
- globals()["calib_then_tpdat"] = time.time() - 50
-
-def calib_set_prefix(pfx):
- globals()["calib_prefix"] = pfx
-
-def calib_set_long(long):
- globals()["calib_long"] = long
-
-def calib_set_lat(lat):
- globals()["calib_lat"] = lat
diff --git a/gr-radio-astronomy/src/python/qa_ra.py b/gr-radio-astronomy/src/python/qa_ra.py
deleted file mode 100755
index 2cb0f42be..000000000
--- a/gr-radio-astronomy/src/python/qa_ra.py
+++ /dev/null
@@ -1,38 +0,0 @@
-#!/usr/bin/env python
-#
-# Copyright 2004,2006,2010 Free Software Foundation, Inc.
-#
-# This file is part of GNU Radio
-#
-# GNU Radio is free software; you can redistribute it and/or modify
-# it under the terms of the GNU General Public License as published by
-# the Free Software Foundation; either version 3, or (at your option)
-# any later version.
-#
-# GNU Radio is distributed in the hope that it will be useful,
-# but WITHOUT ANY WARRANTY; without even the implied warranty of
-# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-# GNU General Public License for more details.
-#
-# You should have received a copy of the GNU General Public License
-# along with GNU Radio; see the file COPYING. If not, write to
-# the Free Software Foundation, Inc., 51 Franklin Street,
-# Boston, MA 02110-1301, USA.
-#
-
-from gnuradio import gr, gr_unittest
-import ra
-
-class test_radio_astronomy (gr_unittest.TestCase):
-
- def setUp (self):
- self.tb = gr.top_block ()
-
- def tearDown (self):
- self.tb = None
-
- def test_000_(self): # ensure that we can load the module
- pass
-
-if __name__ == '__main__':
- gr_unittest.run(test_radio_astronomy, "test_radio_astronomy.xml")
diff --git a/gr-radio-astronomy/src/python/ra_fftsink.py b/gr-radio-astronomy/src/python/ra_fftsink.py
deleted file mode 100755
index 4733027c1..000000000
--- a/gr-radio-astronomy/src/python/ra_fftsink.py
+++ /dev/null
@@ -1,501 +0,0 @@
-#!/usr/bin/env python
-#
-# Copyright 2003,2004,2005,2007 Free Software Foundation, Inc.
-#
-# This file is part of GNU Radio
-#
-# GNU Radio is free software; you can redistribute it and/or modify
-# it under the terms of the GNU General Public License as published by
-# the Free Software Foundation; either version 3, or (at your option)
-# any later version.
-#
-# GNU Radio is distributed in the hope that it will be useful,
-# but WITHOUT ANY WARRANTY; without even the implied warranty of
-# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-# GNU General Public License for more details.
-#
-# You should have received a copy of the GNU General Public License
-# along with GNU Radio; see the file COPYING. If not, write to
-# the Free Software Foundation, Inc., 51 Franklin Street,
-# Boston, MA 02110-1301, USA.
-#
-
-from gnuradio import gr, gru, window
-from gnuradio.wxgui import stdgui2
-import wx
-import gnuradio.wxgui.plot as plot
-import numpy
-import threading
-import math
-import random
-
-default_ra_fftsink_size = (640,140)
-
-
-
-class ra_fft_sink_base(object):
- def __init__(self, input_is_real=False, baseband_freq=0, y_per_div=10, sc_y_per_div=0.5, ref_level=50, sc_ref_level=20,
- sample_rate=1, fft_size=512, fft_rate=15,
- average=False, avg_alpha=None, title='', peak_hold=False, ofunc=None, xydfunc=None):
-
- # initialize common attributes
- self.baseband_freq = baseband_freq
- self.y_divs = 8
- self.y_per_div=y_per_div
- self.sc_y_per_div=sc_y_per_div
- self.ref_level = ref_level
- self.autoscale = False
- self.sc_ref_level = sc_ref_level
- self.sample_rate = sample_rate
- self.fft_size = fft_size
- self.fft_rate = fft_rate
- self.binwidth = float(sample_rate/fft_size)
- self.average = average
- self.ofunc = ofunc
- self.xydfunc = xydfunc
- self.ofunc = ofunc
- if avg_alpha is None:
- self.avg_alpha = 2.0 / fft_rate
- else:
- self.avg_alpha = avg_alpha
- self.title = title
- self.peak_hold = peak_hold
- self.input_is_real = input_is_real
- self.msgq = gr.msg_queue(2) # queue that holds a maximum of 2 messages
-
- def set_y_per_div(self, y_per_div):
- self.y_per_div = y_per_div
-
-
- def set_ref_level(self, ref_level):
- self.ref_level = ref_level
-
- def set_average(self, average):
- self.average = average
- if average:
- self.avg.set_taps(self.avg_alpha)
- self.set_peak_hold(False)
- else:
- self.avg.set_taps(1.0)
-
- def set_peak_hold(self, enable):
- self.peak_hold = enable
- if enable:
- self.set_average(False)
- self.win.set_peak_hold(enable)
-
- def set_autoscale(self, auto):
- self.autoscale = auto
-
- def set_avg_alpha(self, avg_alpha):
- self.avg_alpha = avg_alpha
-
- def set_baseband_freq(self, baseband_freq):
- self.baseband_freq = baseband_freq
-
-
-class ra_fft_sink_f(gr.hier_block2, ra_fft_sink_base):
- def __init__(self, parent, baseband_freq=0,
- y_per_div=10, sc_y_per_div=0.5, sc_ref_level=40, ref_level=50, sample_rate=1, fft_size=512,
- fft_rate=15, average=False, avg_alpha=None, title='',
- size=default_ra_fftsink_size, peak_hold=False, ofunc=None,
- xydfunc=None):
- gr.hier_block2.__init__(self, "ra_fft_sink_f",
- gr.io_signature(1, 1, gr.sizeof_float),
- gr.io_signature(0, 0, 0))
-
- ra_fft_sink_base.__init__(self, input_is_real=True, baseband_freq=baseband_freq,
- y_per_div=y_per_div, sc_y_per_div=sc_y_per_div,
- sc_ref_level=sc_ref_level, ref_level=ref_level,
- sample_rate=sample_rate, fft_size=fft_size,
- fft_rate=fft_rate,
- average=average, avg_alpha=avg_alpha, title=title,
- peak_hold=peak_hold, ofunc=ofunc,
- xydfunc=xydfunc)
-
- self.binwidth = float(sample_rate/2.0)/float(fft_size)
- s2p = gr.serial_to_parallel(gr.sizeof_float, fft_size)
- one_in_n = gr.keep_one_in_n(gr.sizeof_float * fft_size,
- max(1, int(sample_rate/fft_size/fft_rate)))
- mywindow = window.blackmanharris(fft_size)
- fft = gr.fft_vfc(fft_size, True, mywindow)
- c2mag = gr.complex_to_mag(fft_size)
- self.avg = gr.single_pole_iir_filter_ff(1.0, fft_size)
- log = gr.nlog10_ff(20, fft_size, -20*math.log10(fft_size))
- sink = gr.message_sink(gr.sizeof_float * fft_size, self.msgq, True)
-
- self.connect (self, s2p, one_in_n, fft, c2mag, self.avg, log, sink)
-
- self.win = fft_window(self, parent, size=size)
- self.set_average(self.average)
-
-class ra_fft_sink_c(gr.hier_block2, ra_fft_sink_base):
- def __init__(self, parent, baseband_freq=0,
- y_per_div=10, sc_y_per_div=0.5, sc_ref_level=40,
- ref_level=50, sample_rate=1, fft_size=512,
- fft_rate=15, average=False, avg_alpha=None, title='',
- size=default_ra_fftsink_size, peak_hold=False, ofunc=None, xydfunc=None):
-
- gr.hier_block2.__init__(self, "ra_fft_sink_c",
- gr.io_signature(1, 1, gr.sizeof_gr_complex),
- gr.io_signature(0, 0, 0))
-
-
- ra_fft_sink_base.__init__(self, input_is_real=False, baseband_freq=baseband_freq,
- y_per_div=y_per_div, sc_y_per_div=sc_y_per_div,
- sc_ref_level=sc_ref_level, ref_level=ref_level,
- sample_rate=sample_rate, fft_size=fft_size,
- fft_rate=fft_rate,
- average=average, avg_alpha=avg_alpha,
- title=title,
- peak_hold=peak_hold, ofunc=ofunc,
- xydfunc=xydfunc)
-
- s2p = gr.serial_to_parallel(gr.sizeof_gr_complex, fft_size)
- one_in_n = gr.keep_one_in_n(gr.sizeof_gr_complex * fft_size,
- max(1, int(sample_rate/fft_size/fft_rate)))
- mywindow = window.blackmanharris(fft_size)
- fft = gr.fft_vcc(fft_size, True, mywindow)
- c2mag = gr.complex_to_mag(fft_size)
- self.avg = gr.single_pole_iir_filter_ff(1.0, fft_size)
- log = gr.nlog10_ff(20, fft_size, -20*math.log10(fft_size))
- sink = gr.message_sink(gr.sizeof_float * fft_size, self.msgq, True)
-
- self.connect(self, s2p, one_in_n, fft, c2mag, self.avg, log, sink)
-
- self.win = fft_window(self, parent, size=size)
- self.set_average(self.average)
-
-
-# ------------------------------------------------------------------------
-
-myDATA_EVENT = wx.NewEventType()
-EVT_DATA_EVENT = wx.PyEventBinder (myDATA_EVENT, 0)
-
-
-class DataEvent(wx.PyEvent):
- def __init__(self, data):
- wx.PyEvent.__init__(self)
- self.SetEventType (myDATA_EVENT)
- self.data = data
-
- def Clone (self):
- self.__class__ (self.GetId())
-
-
-class input_watcher (threading.Thread):
- def __init__ (self, msgq, fft_size, event_receiver, **kwds):
- threading.Thread.__init__ (self, **kwds)
- self.setDaemon (1)
- self.msgq = msgq
- self.fft_size = fft_size
- self.event_receiver = event_receiver
- self.keep_running = True
- self.start ()
-
- def run (self):
- while (self.keep_running):
- msg = self.msgq.delete_head() # blocking read of message queue
- itemsize = int(msg.arg1())
- nitems = int(msg.arg2())
-
- s = msg.to_string() # get the body of the msg as a string
-
- # There may be more than one FFT frame in the message.
- # If so, we take only the last one
- if nitems > 1:
- start = itemsize * (nitems - 1)
- s = s[start:start+itemsize]
-
- complex_data = numpy.fromstring (s, numpy.float32)
- de = DataEvent (complex_data)
- wx.PostEvent (self.event_receiver, de)
- del de
-
-
-class fft_window (plot.PlotCanvas):
- def __init__ (self, ra_fftsink, parent, id = -1,
- pos = wx.DefaultPosition, size = wx.DefaultSize,
- style = wx.DEFAULT_FRAME_STYLE, name = ""):
- plot.PlotCanvas.__init__ (self, parent, id, pos, size, style, name)
-
- self.y_range = None
- self.ra_fftsink = ra_fftsink
- self.peak_hold = False
- self.peak_vals = None
-
- self.SetEnableGrid (True)
- # self.SetEnableZoom (True)
- # self.SetBackgroundColour ('black')
-
- self.build_popup_menu()
-
- EVT_DATA_EVENT (self, self.set_data)
- wx.EVT_CLOSE (self, self.on_close_window)
- self.Bind(wx.EVT_RIGHT_UP, self.on_right_click)
- self.Bind(wx.EVT_LEFT_UP, self.on_left_click)
- self.Bind(wx.EVT_MOTION, self.on_motion)
-
- self.input_watcher = input_watcher(ra_fftsink.msgq, ra_fftsink.fft_size, self)
-
-
- def on_close_window (self, event):
- print "fft_window:on_close_window"
- self.keep_running = False
-
-
- def set_data (self, evt):
- calc_min = 99e10
- calc_max = -99e10
- dB = evt.data
- L = len (dB)
-
- calc_min = min(dB)
- calc_max = max(dB)
-
- if (self.ra_fftsink.ofunc != None):
- self.ra_fftsink.ofunc(evt.data,L)
-
- if self.peak_hold:
- if self.peak_vals is None:
- self.peak_vals = dB
- else:
- self.peak_vals = numpy.maximum(dB, self.peak_vals)
- dB = self.peak_vals
-
- x = max(abs(self.ra_fftsink.sample_rate), abs(self.ra_fftsink.baseband_freq))
- if x >= 1e9:
- sf = 1e-9
- units = "GHz"
- elif x >= 1e6:
- sf = 1e-6
- units = "MHz"
- elif x >= 1e3:
- sf = 1e-3
- units = "kHz"
- else:
- sf = 1.0
- units = "Hz"
-
- if self.ra_fftsink.input_is_real: # only plot 1/2 the points
- x_vals = ((numpy.arange (L/2)
- * (self.ra_fftsink.sample_rate * sf / L))
- + self.ra_fftsink.baseband_freq * sf)
- points = numpy.zeros((len(x_vals), 2), numpy.float64)
- points[:,0] = x_vals
- points[:,1] = dB[0:L/2]
- else:
- # the "negative freqs" are in the second half of the array
- x_vals = ((numpy.arange(-L/2, L/2)
- * (self.ra_fftsink.sample_rate * sf / L))
- + self.ra_fftsink.baseband_freq * sf)
- points = numpy.zeros((len(x_vals), 2), numpy.float64)
- points[:,0] = x_vals
- points[:,1] = numpy.concatenate ((dB[L/2:], dB[0:L/2]))
-
- lines = plot.PolyLine (points, colour='BLUE')
- graphics = plot.PlotGraphics ([lines],
- title=self.ra_fftsink.title,
- xLabel = units, yLabel = "dB")
-
- self.Draw (graphics, xAxis=None, yAxis=self.y_range)
- d = calc_max - calc_min
- d = d * 0.1
- if self.ra_fftsink.autoscale == True:
- self.y_range = self._axisInterval ('min', calc_min-d, calc_max+d)
- else:
- self.update_y_range ()
-
- def set_peak_hold(self, enable):
- self.peak_hold = enable
- self.peak_vals = None
-
- def update_y_range (self):
- ymax = self.ra_fftsink.ref_level
- ymin = self.ra_fftsink.ref_level - self.ra_fftsink.y_per_div * self.ra_fftsink.y_divs
- self.y_range = self._axisInterval ('min', ymin, ymax)
-
- def on_average(self, evt):
- # print "on_average"
- self.ra_fftsink.set_average(evt.IsChecked())
-
- def on_peak_hold(self, evt):
- # print "on_peak_hold"
- self.ra_fftsink.set_peak_hold(evt.IsChecked())
-
- def on_autoscale(self, evt):
- self.ra_fftsink.set_autoscale(evt.IsChecked())
-
- def on_incr_ref_level(self, evt):
- # print "on_incr_ref_level"
- self.ra_fftsink.set_ref_level(self.ra_fftsink.ref_level
- + self.ra_fftsink.y_per_div)
-
- def on_decr_ref_level(self, evt):
- # print "on_decr_ref_level"
- self.ra_fftsink.set_ref_level(self.ra_fftsink.ref_level
- - self.ra_fftsink.y_per_div)
-
- def on_incr_y_per_div(self, evt):
- # print "on_incr_y_per_div"
- self.ra_fftsink.set_y_per_div(next_up(self.ra_fftsink.y_per_div, (0.5,1,2,5,10)))
-
- def on_decr_y_per_div(self, evt):
- # print "on_decr_y_per_div"
- self.ra_fftsink.set_y_per_div(next_down(self.ra_fftsink.y_per_div, (0.5,1,2,5,10)))
-
- def on_y_per_div(self, evt):
- # print "on_y_per_div"
- Id = evt.GetId()
- if Id == self.id_y_per_div_1:
- self.ra_fftsink.set_y_per_div(0.5)
- elif Id == self.id_y_per_div_2:
- self.ra_fftsink.set_y_per_div(1.0)
- elif Id == self.id_y_per_div_5:
- self.ra_fftsink.set_y_per_div(2.0)
- elif Id == self.id_y_per_div_10:
- self.ra_fftsink.set_y_per_div(5.0)
- elif Id == self.id_y_per_div_20:
- self.ra_fftsink.set_y_per_div(10)
-
-
- def on_right_click(self, event):
- menu = self.popup_menu
- for id, pred in self.checkmarks.items():
- item = menu.FindItemById(id)
- item.Check(pred())
- self.PopupMenu(menu, event.GetPosition())
-
- def on_motion(self, event):
- if not self.ra_fftsink.xydfunc == None:
- xy = self.GetXY(event)
- self.ra_fftsink.xydfunc (0,xy)
-
- def on_left_click(self,event):
- if not self.ra_fftsink.xydfunc == None:
- xy = self.GetXY(event)
- self.ra_fftsink.xydfunc (1,xy)
-
- def build_popup_menu(self):
- self.id_incr_ref_level = wx.NewId()
- self.id_decr_ref_level = wx.NewId()
- self.id_autoscale = wx.NewId()
- self.id_incr_y_per_div = wx.NewId()
- self.id_decr_y_per_div = wx.NewId()
- self.id_y_per_div_1 = wx.NewId()
- self.id_y_per_div_2 = wx.NewId()
- self.id_y_per_div_5 = wx.NewId()
- self.id_y_per_div_10 = wx.NewId()
- self.id_y_per_div_20 = wx.NewId()
- self.id_average = wx.NewId()
- self.id_peak_hold = wx.NewId()
-
- self.Bind(wx.EVT_MENU, self.on_average, id=self.id_average)
- self.Bind(wx.EVT_MENU, self.on_peak_hold, id=self.id_peak_hold)
- self.Bind(wx.EVT_MENU, self.on_autoscale, id=self.id_autoscale)
- self.Bind(wx.EVT_MENU, self.on_incr_ref_level, id=self.id_incr_ref_level)
- self.Bind(wx.EVT_MENU, self.on_decr_ref_level, id=self.id_decr_ref_level)
- self.Bind(wx.EVT_MENU, self.on_incr_y_per_div, id=self.id_incr_y_per_div)
- self.Bind(wx.EVT_MENU, self.on_decr_y_per_div, id=self.id_decr_y_per_div)
- self.Bind(wx.EVT_MENU, self.on_y_per_div, id=self.id_y_per_div_1)
- self.Bind(wx.EVT_MENU, self.on_y_per_div, id=self.id_y_per_div_2)
- self.Bind(wx.EVT_MENU, self.on_y_per_div, id=self.id_y_per_div_5)
- self.Bind(wx.EVT_MENU, self.on_y_per_div, id=self.id_y_per_div_10)
- self.Bind(wx.EVT_MENU, self.on_y_per_div, id=self.id_y_per_div_20)
-
-
- # make a menu
- menu = wx.Menu()
- self.popup_menu = menu
- menu.AppendCheckItem(self.id_average, "Average")
- menu.AppendCheckItem(self.id_peak_hold, "Peak Hold")
- menu.Append(self.id_incr_ref_level, "Incr Ref Level")
- menu.Append(self.id_decr_ref_level, "Decr Ref Level")
- # menu.Append(self.id_incr_y_per_div, "Incr dB/div")
- # menu.Append(self.id_decr_y_per_div, "Decr dB/div")
- menu.AppendSeparator()
- # we'd use RadioItems for these, but they're not supported on Mac
- menu.AppendCheckItem(self.id_autoscale, "Autoscale")
- menu.AppendCheckItem(self.id_y_per_div_1, "0.5 dB/div")
- menu.AppendCheckItem(self.id_y_per_div_2, "1.0 dB/div")
- menu.AppendCheckItem(self.id_y_per_div_5, "2.0 dB/div")
- menu.AppendCheckItem(self.id_y_per_div_10, "5.0 dB/div")
- menu.AppendCheckItem(self.id_y_per_div_20, "10.0 dB/div")
-
- self.checkmarks = {
- self.id_average : lambda : self.ra_fftsink.average,
- self.id_peak_hold : lambda : self.ra_fftsink.peak_hold,
- self.id_autoscale : lambda : self.ra_fftsink.autoscale,
- self.id_y_per_div_1 : lambda : self.ra_fftsink.y_per_div == 0.5,
- self.id_y_per_div_2 : lambda : self.ra_fftsink.y_per_div == 1.0,
- self.id_y_per_div_5 : lambda : self.ra_fftsink.y_per_div == 2.0,
- self.id_y_per_div_10 : lambda : self.ra_fftsink.y_per_div == 5.0,
- self.id_y_per_div_20 : lambda : self.ra_fftsink.y_per_div == 10.0,
- }
-
-
-def next_up(v, seq):
- """
- Return the first item in seq that is > v.
- """
- for s in seq:
- if s > v:
- return s
- return v
-
-def next_down(v, seq):
- """
- Return the last item in seq that is < v.
- """
- rseq = list(seq[:])
- rseq.reverse()
-
- for s in rseq:
- if s < v:
- return s
- return v
-
-
-# ----------------------------------------------------------------
-# Standalone test app
-# ----------------------------------------------------------------
-
-class test_app_flow_graph (stdgui2.std_top_block):
- def __init__(self, frame, panel, vbox, argv):
- stdgui2.std_top_block.__init__ (self, frame, panel, vbox, argv)
-
- fft_size = 256
-
- # build our flow graph
- input_rate = 20.000e3
-
- # Generate a complex sinusoid
- src1 = gr.sig_source_c (input_rate, gr.GR_SIN_WAVE, 5.75e3, 1000)
- #src1 = gr.sig_source_c (input_rate, gr.GR_CONST_WAVE, 5.75e3, 1000)
-
- # We add these throttle blocks so that this demo doesn't
- # suck down all the CPU available. Normally you wouldn't use these.
- thr1 = gr.throttle(gr.sizeof_gr_complex, input_rate)
-
- sink1 = ra_fft_sink_c (panel, title="Complex Data", fft_size=fft_size,
- sample_rate=input_rate, baseband_freq=100e3,
- ref_level=60, y_per_div=10)
- vbox.Add (sink1.win, 1, wx.EXPAND)
- self.connect (src1, thr1, sink1)
-
- src2 = gr.sig_source_f (input_rate, gr.GR_SIN_WAVE, 5.75e3, 1000)
- #src2 = gr.sig_source_f (input_rate, gr.GR_CONST_WAVE, 5.75e3, 1000)
- thr2 = gr.throttle(gr.sizeof_float, input_rate)
- sink2 = ra_fft_sink_f (panel, title="Real Data", fft_size=fft_size*2,
- sample_rate=input_rate, baseband_freq=100e3,
- ref_level=60, y_per_div=10)
- vbox.Add (sink2.win, 1, wx.EXPAND)
- self.connect (src2, thr2, sink2)
-
-def main ():
- app = stdgui2.stdapp (test_app_flow_graph,
- "FFT Sink Test App")
- app.MainLoop ()
-
-if __name__ == '__main__':
- main ()
diff --git a/gr-radio-astronomy/src/python/ra_stripchartsink.py b/gr-radio-astronomy/src/python/ra_stripchartsink.py
deleted file mode 100755
index 76988f8f0..000000000
--- a/gr-radio-astronomy/src/python/ra_stripchartsink.py
+++ /dev/null
@@ -1,400 +0,0 @@
-#!/usr/bin/env python
-#
-# Copyright 2003,2004,2005,2007 Free Software Foundation, Inc.
-#
-# This file is part of GNU Radio
-#
-# GNU Radio is free software; you can redistribute it and/or modify
-# it under the terms of the GNU General Public License as published by
-# the Free Software Foundation; either version 3, or (at your option)
-# any later version.
-#
-# GNU Radio is distributed in the hope that it will be useful,
-# but WITHOUT ANY WARRANTY; without even the implied warranty of
-# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-# GNU General Public License for more details.
-#
-# You should have received a copy of the GNU General Public License
-# along with GNU Radio; see the file COPYING. If not, write to
-# the Free Software Foundation, Inc., 51 Franklin Street,
-# Boston, MA 02110-1301, USA.
-#
-
-from gnuradio import gr, gru
-from gnuradio.wxgui import stdgui2
-import wx
-import gnuradio.wxgui.plot as plot
-import Numeric
-import threading
-import math
-import ephem
-import time
-
-default_stripchartsink_size = (640,140)
-global_yvalues = []
-
-class stripchart_sink_base(object):
- def __init__(self, input_is_real=False, y_per_div=10, ref_level=50,
- sample_rate=1, stripsize=4,
- title='',xlabel="X", ylabel="Y", divbase=0.025,
- parallel=False, scaling=1.0, autoscale=False):
-
- # initialize common attributes
- self.y_divs = 8
- self.y_per_div=y_per_div
- self.ref_level = ref_level
- self.autoscale = autoscale
- self.sample_rate = sample_rate
- self.parallel = parallel
- self.title = title
- self.xlabel = xlabel
- self.ylabel = ylabel
- self.divbase = divbase
- self.scaling = scaling
- self.input_is_real = input_is_real
- self.msgq = gr.msg_queue(2) # queue that holds a maximum of 2 messages
- self.vector=Numeric.zeros(stripsize,Numeric.Float64)
- self.wcnt = 0
- self.timecnt = 0
- self.stripsize=stripsize
-
- def set_y_per_div(self, y_per_div):
- self.y_per_div = y_per_div
-
- def set_ref_level(self, ref_level):
- self.ref_level = ref_level
-
- def set_autoscale(self, auto):
- self.autoscale = auto
-
-class stripchart_sink_f(gr.hier_block2, stripchart_sink_base):
- def __init__(self, parent,
- y_per_div=10, ref_level=50, sample_rate=1,
- title='', stripsize=4,
- size=default_stripchartsink_size,xlabel="X",
- ylabel="Y", divbase=0.025,
- parallel=False, scaling=1.0, autoscale=False):
-
- if parallel == False:
- gr.hier_block2.__init__(self, "stripchart_sink_f",
- gr.io_signature(1, 1, gr.sizeof_float),
- gr.io_signature(0, 0, 0))
- else:
- gr.hier_block2.__init__(self, "stripchart_sink_f",
- gr.io_signature(1, 1, gr.sizeof_float*stripsize),
- gr.io_signature(0, 0, 0))
-
-
- stripchart_sink_base.__init__(self, input_is_real=True,
- y_per_div=y_per_div, ref_level=ref_level,
- sample_rate=sample_rate,
- stripsize=stripsize,
- xlabel=xlabel, ylabel=ylabel,
- divbase=divbase, title=title,
- parallel=parallel,
- scaling=scaling, autoscale=autoscale)
-
- if (parallel == True):
- one = gr.keep_one_in_n (gr.sizeof_float*stripsize, 1)
- sink = gr.message_sink(gr.sizeof_float*stripsize, self.msgq, True)
- else:
- one = gr.keep_one_in_n (gr.sizeof_float, 1)
- sink = gr.message_sink(gr.sizeof_float, self.msgq, True)
- self.connect (self, one, sink)
-
- self.win = stripchart_window(self, parent, size=size)
-
-
-
-# ------------------------------------------------------------------------
-
-myDATA_EVENT = wx.NewEventType()
-EVT_DATA_EVENT = wx.PyEventBinder (myDATA_EVENT, 0)
-
-
-class DataEvent(wx.PyEvent):
- def __init__(self, data):
- wx.PyEvent.__init__(self)
- self.SetEventType (myDATA_EVENT)
- self.data = data
-
- def Clone (self):
- self.__class__ (self.GetId())
-
-
-class input_watcher (threading.Thread):
- def __init__ (self, msgq, evsize, event_receiver, **kwds):
- threading.Thread.__init__ (self, **kwds)
- self.setDaemon (1)
- self.msgq = msgq
- self.evsize = evsize
- self.event_receiver = event_receiver
- self.keep_running = True
- self.start ()
-
- def run (self):
- while (self.keep_running):
- msg = self.msgq.delete_head() # blocking read of message queue
- itemsize = int(msg.arg1())
- nitems = int(msg.arg2())
-
- s = msg.to_string() # get the body of the msg as a string
-
- # There may be more than one frame in the message.
- # If so, we take only the last one
- if nitems > 1:
- start = itemsize * (nitems - 1)
- s = s[start:start+itemsize]
-
- complex_data = Numeric.fromstring (s, Numeric.Float32)
- de = DataEvent (complex_data)
- wx.PostEvent (self.event_receiver, de)
- del de
-
-class stripchart_window(plot.PlotCanvas):
- def __init__ (self, stripchartsink, parent, id = -1,
- pos = wx.DefaultPosition, size = wx.DefaultSize,
- style = wx.DEFAULT_FRAME_STYLE, name = ""):
- plot.PlotCanvas.__init__ (self, parent, id, pos, size, style, name)
-
- self.y_range = None
- self.stripchartsink = stripchartsink
-
- self.SetEnableGrid (True)
- # self.SetEnableZoom (True)
- # self.SetBackgroundColour ('black')
-
- self.build_popup_menu()
-
- EVT_DATA_EVENT (self, self.set_data)
-
- wx.EVT_CLOSE (self, self.on_close_window)
- self.Bind(wx.EVT_RIGHT_UP, self.on_right_click)
-
- self.input_watcher = input_watcher(stripchartsink.msgq, 1, self)
-
-
- def on_close_window (self, event):
- print "stripchart_window:on_close_window"
- self.keep_running = False
-
-
- def set_data (self, evt):
- indata = evt.data
- L = len (indata)
-
- calc_min = min(indata)
- calc_max = max(indata)
- d = calc_max - calc_min
- d = d * 0.1
- if self.stripchartsink.autoscale == True and self.stripchartsink.parallel == True:
- self.y_range = self._axisInterval ('min', calc_min-d, calc_max+d)
-
- N = self.stripchartsink.stripsize
- if self.stripchartsink.parallel != True:
- for i in range(1,N):
- pooey = N-i
- self.stripchartsink.vector[pooey] = self.stripchartsink.vector[pooey-1]
-
- self.stripchartsink.vector[0] = indata
-
- else:
- self.stripchartsink.vector = indata
-
- if self.stripchartsink.parallel == True:
- avg = 0
- for i in range(0,self.stripchartsink.stripsize):
- if self.stripchartsink.vector[i] > 0:
- avg += self.stripchartsink.vector[i]
- if self.stripchartsink.vector[i] < calc_min:
- calc_min = self.stripchartsink.vector[i]
- if self.stripchartsink.vector[i] > calc_max:
- calc_max = self.stripchartsink.vector[i]
-
- avg /= self.stripchartsink.stripsize
- markers = []
- placedmarkers = 0
- for i in range(0,self.stripchartsink.stripsize):
- if (self.stripchartsink.vector[i] > 0 and
- self.stripchartsink.vector[i] > (avg*5)):
- markers.append((i*self.stripchartsink.scaling,
- self.stripchartsink.vector[i]))
- placedmarkers += 1
-
- points = Numeric.zeros((N,2), Numeric.Float64)
- for i in range(0,N):
- if self.stripchartsink.scaling == 1.0:
- points[i,0] = i
- else:
- points[i,0] = i * self.stripchartsink.scaling
- points[i,1] = self.stripchartsink.vector[i]
-
- if self.stripchartsink.parallel == True and placedmarkers > 1:
- for i in range(0,N):
- self.stripchartsink.vector[i] = 0
-
- marks = plot.PolyMarker(markers, colour='BLACK', marker='triangle_down')
-
- lines = plot.PolyLine (points, colour='RED')
-
- # Temporary--I'm find the markers distracting
- placedmarkers = 0
- xlab = self.stripchartsink.xlabel
- ylab = self.stripchartsink.ylabel
- if (self.stripchartsink.parallel == False) or (placedmarkers <= 1):
- graphics = plot.PlotGraphics ([lines],
- title=self.stripchartsink.title,
- xLabel = xlab, yLabel = ylab)
-
- else:
- graphics = plot.PlotGraphics ([lines,marks],
- title=self.stripchartsink.title,
- xLabel = xlab, yLabel = ylab)
-
- self.Draw (graphics, xAxis=None, yAxis=self.y_range)
-
- if self.stripchartsink.autoscale == False or self.stripchartsink.parallel == False:
- self.update_y_range ()
-
-
- def update_y_range (self):
- ymax = self.stripchartsink.ref_level
- ymin = self.stripchartsink.ref_level - self.stripchartsink.y_per_div * self.stripchartsink.y_divs
- self.y_range = self._axisInterval ('min', ymin, ymax)
-
- def on_incr_ref_level(self, evt):
- # print "on_incr_ref_level"
- self.stripchartsink.set_ref_level(self.stripchartsink.ref_level
- + self.stripchartsink.y_per_div)
-
- def on_decr_ref_level(self, evt):
- # print "on_decr_ref_level"
- self.stripchartsink.set_ref_level(self.stripchartsink.ref_level
- - self.stripchartsink.y_per_div)
-
- def on_autoscale(self, evt):
- self.stripchartsink.set_autoscale(evt.IsChecked())
-
- def on_incr_y_per_div(self, evt):
- divbase = self.stripchartsink.divbase
- x1 = 1 * divbase
- x2 = 2 * divbase
- x4 = 4 * divbase
- x10 = 10 * divbase
- x20 = 20 * divbase
- # print "on_incr_y_per_div"
- self.stripchartsink.set_y_per_div(next_up(self.stripchartsink.y_per_div, (x1,x2,x4,x10,x20)))
-
- def on_decr_y_per_div(self, evt):
- # print "on_decr_y_per_div"
- divbase = self.stripchartsink.divbase
- x1 = 1 * divbase
- x2 = 2 * divbase
- x4 = 4 * divbase
- x10 = 10 * divbase
- x20 = 20 * divbase
- self.stripchartsink.set_y_per_div(next_down(self.stripchartsink.y_per_div, (x1,x2,x4,x10,x20)))
-
- def on_y_per_div(self, evt):
- # print "on_y_per_div"
- divbase=self.stripchartsink.divbase
- Id = evt.GetId()
- if Id == self.id_y_per_div_1:
- self.stripchartsink.set_y_per_div(1*divbase)
- elif Id == self.id_y_per_div_2:
- self.stripchartsink.set_y_per_div(2*divbase)
- elif Id == self.id_y_per_div_5:
- self.stripchartsink.set_y_per_div(4*divbase)
- elif Id == self.id_y_per_div_10:
- self.stripchartsink.set_y_per_div(10*divbase)
- elif Id == self.id_y_per_div_20:
- self.stripchartsink.set_y_per_div(20*divbase)
-
-
- def on_right_click(self, event):
- menu = self.popup_menu
- for id, pred in self.checkmarks.items():
- item = menu.FindItemById(id)
- item.Check(pred())
- self.PopupMenu(menu, event.GetPosition())
-
-
- def build_popup_menu(self):
- divbase=self.stripchartsink.divbase
- self.id_incr_ref_level = wx.NewId()
- self.id_decr_ref_level = wx.NewId()
- self.id_autoscale = wx.NewId()
- self.id_incr_y_per_div = wx.NewId()
- self.id_decr_y_per_div = wx.NewId()
- self.id_y_per_div_1 = wx.NewId()
- self.id_y_per_div_2 = wx.NewId()
- self.id_y_per_div_5 = wx.NewId()
- self.id_y_per_div_10 = wx.NewId()
- self.id_y_per_div_20 = wx.NewId()
-
- self.Bind(wx.EVT_MENU, self.on_incr_ref_level, id=self.id_incr_ref_level)
- self.Bind(wx.EVT_MENU, self.on_decr_ref_level, id=self.id_decr_ref_level)
- self.Bind(wx.EVT_MENU, self.on_autoscale, id=self.id_autoscale)
- self.Bind(wx.EVT_MENU, self.on_incr_y_per_div, id=self.id_incr_y_per_div)
- self.Bind(wx.EVT_MENU, self.on_decr_y_per_div, id=self.id_decr_y_per_div)
- self.Bind(wx.EVT_MENU, self.on_y_per_div, id=self.id_y_per_div_1)
- self.Bind(wx.EVT_MENU, self.on_y_per_div, id=self.id_y_per_div_2)
- self.Bind(wx.EVT_MENU, self.on_y_per_div, id=self.id_y_per_div_5)
- self.Bind(wx.EVT_MENU, self.on_y_per_div, id=self.id_y_per_div_10)
- self.Bind(wx.EVT_MENU, self.on_y_per_div, id=self.id_y_per_div_20)
-
-
- # make a menu
- menu = wx.Menu()
- self.popup_menu = menu
- menu.Append(self.id_incr_ref_level, "Incr Ref Level")
- menu.Append(self.id_decr_ref_level, "Decr Ref Level")
- menu.AppendSeparator()
- menu.AppendCheckItem(self.id_autoscale, "Auto Scale")
- # we'd use RadioItems for these, but they're not supported on Mac
- v = 1.0*divbase
- s = "%.3f" % v
- menu.AppendCheckItem(self.id_y_per_div_1, s)
- v = 2.0*divbase
- s = "%.3f" % v
- menu.AppendCheckItem(self.id_y_per_div_2, s)
- v = 4.0*divbase
- s = "%.3f" % v
- menu.AppendCheckItem(self.id_y_per_div_5, s)
- v = 10*divbase
- s = "%.3f" % v
- menu.AppendCheckItem(self.id_y_per_div_10, s)
- v = 20*divbase
- s = "%.3f" % v
- menu.AppendCheckItem(self.id_y_per_div_20, s)
-
- self.checkmarks = {
- self.id_autoscale : lambda : self.stripchartsink.autoscale,
- self.id_y_per_div_1 : lambda : self.stripchartsink.y_per_div == 1*divbase,
- self.id_y_per_div_2 : lambda : self.stripchartsink.y_per_div == 2*divbase,
- self.id_y_per_div_5 : lambda : self.stripchartsink.y_per_div == 4*divbase,
- self.id_y_per_div_10 : lambda : self.stripchartsink.y_per_div == 10*divbase,
- self.id_y_per_div_20 : lambda : self.stripchartsink.y_per_div == 20*divbase,
- }
-
-
-def next_up(v, seq):
- """
- Return the first item in seq that is > v.
- """
- for s in seq:
- if s > v:
- return s
- return v
-
-def next_down(v, seq):
- """
- Return the last item in seq that is < v.
- """
- rseq = list(seq[:])
- rseq.reverse()
-
- for s in rseq:
- if s < v:
- return s
- return v
diff --git a/gr-radio-astronomy/src/python/ra_waterfallsink.py b/gr-radio-astronomy/src/python/ra_waterfallsink.py
deleted file mode 100755
index e946f3a10..000000000
--- a/gr-radio-astronomy/src/python/ra_waterfallsink.py
+++ /dev/null
@@ -1,646 +0,0 @@
-#!/usr/bin/env python
-#
-# Copyright 2003,2004,2005,2007 Free Software Foundation, Inc.
-#
-# This file is part of GNU Radio
-#
-# GNU Radio is free software; you can redistribute it and/or modify
-# it under the terms of the GNU General Public License as published by
-# the Free Software Foundation; either version 2, or (at your option)
-# any later version.
-#
-# GNU Radio is distributed in the hope that it will be useful,
-# but WITHOUT ANY WARRANTY; without even the implied warranty of
-# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-# GNU General Public License for more details.
-#
-# You should have received a copy of the GNU General Public License
-# along with GNU Radio; see the file COPYING. If not, write to
-# the Free Software Foundation, Inc., 51 Franklin Street,
-# Boston, MA 02110-1301, USA.
-#
-
-from gnuradio import gr, gru, window
-from gnuradio.wxgui import stdgui2
-import wx
-import gnuradio.wxgui.plot as plot
-import numpy
-import os
-import threading
-import math
-
-default_fftsink_size = (640,240)
-default_fft_rate = gr.prefs().get_long('wxgui', 'fft_rate', 15)
-
-def axis_design( x1, x2, nx ):
- # Given start, end, and number of labels, return value of first label,
- # increment between labels, number of unlabeled division between labels,
- # and scale factor.
-
- dx = abs( x2 - x1 )/float(nx+1) # allow for space at each end
- ldx = math.log10(dx)
- l2 = math.log10(2.)
- l5 = math.log10(5.)
- le = math.floor(ldx)
- lf = ldx - le
- if lf < l2/2:
- c = 1
- dt = 10
- elif lf < (l2+l5)/2:
- c = 2
- dt = 4
- elif lf < (l5+1)/2:
- c = 5
- dt = 5
- else:
- c = 1
- dt = 10
- le += 1
- inc = c*pow( 10., le )
- first = math.ceil( x1/inc )*inc
- scale = 1.
- while ( abs(x1*scale) >= 1e5 ) or ( abs(x2*scale) >= 1e5 ):
- scale *= 1e-3
- return ( first, inc, dt, scale )
-
-
-class waterfall_sink_base(object):
- def __init__(self, input_is_real=False, baseband_freq=0,
- sample_rate=1, fft_size=512,
- fft_rate=default_fft_rate,
- average=False, avg_alpha=None, title='', ofunc=None, xydfunc=None):
-
- # initialize common attributes
- self.baseband_freq = baseband_freq
- self.sample_rate = sample_rate
- self.fft_size = fft_size
- self.fft_rate = fft_rate
- self.average = average
- self.ofunc = ofunc
- self.xydfunc = xydfunc
- if avg_alpha is None:
- self.avg_alpha = 2.0 / fft_rate
- else:
- self.avg_alpha = avg_alpha
- self.title = title
- self.input_is_real = input_is_real
- self.msgq = gr.msg_queue(2) # queue up to 2 messages
-
- def set_average(self, average):
- self.average = average
- if average:
- self.avg.set_taps(self.avg_alpha)
- else:
- self.avg.set_taps(1.0)
-
- def set_avg_alpha(self, avg_alpha):
- self.avg_alpha = avg_alpha
-
- def set_baseband_freq(self, baseband_freq):
- self.baseband_freq = baseband_freq
-
- def set_sample_rate(self, sample_rate):
- self.sample_rate = sample_rate
- self._set_n()
-
- def _set_n(self):
- self.one_in_n.set_n(max(1, int(self.sample_rate/self.fft_size/self.fft_rate)))
-
-class waterfall_sink_f(gr.hier_block2, waterfall_sink_base):
- def __init__(self, parent, baseband_freq=0,
- ref_level=0, sample_rate=1, fft_size=512,
- fft_rate=default_fft_rate, average=False, avg_alpha=None,
- title='', size=default_fftsink_size, report=None, span=40, ofunc=None, xydfunc=None):
-
- gr.hier_block2.__init__(self, "waterfall_sink_f",
- gr.io_signature(1, 1, gr.sizeof_float),
- gr.io_signature(0, 0, 0))
-
- waterfall_sink_base.__init__(self, input_is_real=True,
- baseband_freq=baseband_freq,
- sample_rate=sample_rate,
- fft_size=fft_size, fft_rate=fft_rate,
- average=average, avg_alpha=avg_alpha,
- title=title)
-
- s2p = gr.serial_to_parallel(gr.sizeof_float, self.fft_size)
- self.one_in_n = gr.keep_one_in_n(gr.sizeof_float * self.fft_size,
- max(1, int(self.sample_rate/self.fft_size/self.fft_rate)))
- mywindow = window.blackmanharris(self.fft_size)
- fft = gr.fft_vfc(self.fft_size, True, mywindow)
- c2mag = gr.complex_to_mag(self.fft_size)
- self.avg = gr.single_pole_iir_filter_ff(1.0, self.fft_size)
- log = gr.nlog10_ff(20, self.fft_size, -20*math.log10(self.fft_size))
- sink = gr.message_sink(gr.sizeof_float * self.fft_size, self.msgq, True)
-
- self.connect(self, s2p, self.one_in_n, fft, c2mag, self.avg, log, sink)
- self.win = waterfall_window(self, parent, size=size, report=report,
- ref_level=ref_level, span=span, ofunc=ofunc, xydfunc=xydfunc)
- self.set_average(self.average)
-
-
-class waterfall_sink_c(gr.hier_block2, waterfall_sink_base):
- def __init__(self, parent, baseband_freq=0,
- ref_level=0, sample_rate=1, fft_size=512,
- fft_rate=default_fft_rate, average=False, avg_alpha=None,
- title='', size=default_fftsink_size, report=None, span=40, ofunc=None, xydfunc=None):
-
- gr.hier_block2.__init__(self, "waterfall_sink_c",
- gr.io_signature(1, 1, gr.sizeof_gr_complex),
- gr.io_signature(0, 0, 0))
-
- waterfall_sink_base.__init__(self, input_is_real=False,
- baseband_freq=baseband_freq,
- sample_rate=sample_rate,
- fft_size=fft_size,
- fft_rate=fft_rate,
- average=average, avg_alpha=avg_alpha,
- title=title)
-
- s2p = gr.serial_to_parallel(gr.sizeof_gr_complex, self.fft_size)
- self.one_in_n = gr.keep_one_in_n(gr.sizeof_gr_complex * self.fft_size,
- max(1, int(self.sample_rate/self.fft_size/self.fft_rate)))
-
- mywindow = window.blackmanharris(self.fft_size)
- fft = gr.fft_vcc(self.fft_size, True, mywindow)
- c2mag = gr.complex_to_mag(self.fft_size)
- self.avg = gr.single_pole_iir_filter_ff(1.0, self.fft_size)
- log = gr.nlog10_ff(20, self.fft_size, -20*math.log10(self.fft_size))
- sink = gr.message_sink(gr.sizeof_float * self.fft_size, self.msgq, True)
-
- self.connect(self, s2p, self.one_in_n, fft, c2mag, self.avg, log, sink)
- self.win = waterfall_window(self, parent, size=size, report=report,
- ref_level=ref_level, span=span, ofunc=ofunc, xydfunc=xydfunc)
- self.set_average(self.average)
-
-
-# ------------------------------------------------------------------------
-
-myDATA_EVENT = wx.NewEventType()
-EVT_DATA_EVENT = wx.PyEventBinder (myDATA_EVENT, 0)
-
-
-class DataEvent(wx.PyEvent):
- def __init__(self, data):
- wx.PyEvent.__init__(self)
- self.SetEventType (myDATA_EVENT)
- self.data = data
-
- def Clone (self):
- self.__class__ (self.GetId())
-
-
-class input_watcher (threading.Thread):
- def __init__ (self, msgq, fft_size, event_receiver, **kwds):
- threading.Thread.__init__ (self, **kwds)
- self.setDaemon (1)
- self.msgq = msgq
- self.fft_size = fft_size
- self.event_receiver = event_receiver
- self.keep_running = True
- self.start ()
-
- def run (self):
- while (self.keep_running):
- msg = self.msgq.delete_head() # blocking read of message queue
- itemsize = int(msg.arg1())
- nitems = int(msg.arg2())
-
- s = msg.to_string() # get the body of the msg as a string
-
- # There may be more than one FFT frame in the message.
- # If so, we take only the last one
- if nitems > 1:
- start = itemsize * (nitems - 1)
- s = s[start:start+itemsize]
-
- complex_data = numpy.fromstring (s, numpy.float32)
- de = DataEvent (complex_data)
- wx.PostEvent (self.event_receiver, de)
- del de
-
-
-class waterfall_window (wx.ScrolledWindow):
- def __init__ (self, fftsink, parent, id = -1,
- pos = wx.DefaultPosition, size = wx.DefaultSize,
- style = wx.DEFAULT_FRAME_STYLE, name = "", report=None,
- ref_level = 0, span = 50, ofunc=None, xydfunc=None):
- wx.ScrolledWindow.__init__(self, parent, id, pos, size,
- style|wx.HSCROLL, name)
- self.parent = parent
- self.SetCursor(wx.StockCursor(wx.CURSOR_IBEAM))
- self.ref_level = ref_level
- self.scale_factor = 256./span
-
- self.ppsh = 128 # pixels per scroll, horizontal
- self.SetScrollbars( self.ppsh, 0, fftsink.fft_size/self.ppsh, 0 )
-
- self.fftsink = fftsink
- self.size = size
- self.report = report
- self.ofunc = ofunc
- self.xydfunc = xydfunc
-
- dc1 = wx.MemoryDC()
- dc1.SetFont( wx.SMALL_FONT )
- self.h_scale = dc1.GetCharHeight() + 3
- #self.bm_size = ( self.fftsink.fft_size, self.size[1] - self.h_scale )
- self.im_size = ( self.fftsink.fft_size, self.size[1] - self.h_scale )
- #self.bm = wx.EmptyBitmap( self.bm_size[0], self.bm_size[1], -1)
- self.im = wx.EmptyImage( self.im_size[0], self.im_size[1], True )
- self.im_cur = 0
-
- self.baseband_freq = None
-
- self.make_pens()
-
- wx.EVT_PAINT( self, self.OnPaint )
- wx.EVT_CLOSE (self, self.on_close_window)
- #wx.EVT_LEFT_UP(self, self.on_left_up)
- #wx.EVT_LEFT_DOWN(self, self.on_left_down)
- EVT_DATA_EVENT (self, self.set_data)
-
- self.build_popup_menu()
-
- wx.EVT_CLOSE (self, self.on_close_window)
- self.Bind(wx.EVT_RIGHT_UP, self.on_right_click)
- self.Bind(wx.EVT_MOTION, self.on_motion)
-
- self.down_pos = None
-
- self.input_watcher = input_watcher(fftsink.msgq, fftsink.fft_size, self)
-
- def on_close_window (self, event):
- self.keep_running = False
-
- def on_left_down( self, evt ):
- self.down_pos = evt.GetPosition()
- self.down_time = evt.GetTimestamp()
-
- def on_left_up( self, evt ):
- if self.down_pos:
- dt = ( evt.GetTimestamp() - self.down_time )/1000.
- pph = self.fftsink.fft_size/float(self.fftsink.sample_rate)
- dx = evt.GetPosition()[0] - self.down_pos[0]
- if dx != 0:
- rt = pph/dx
- else:
- rt = 0
- t = 'Down time: %f Delta f: %f Period: %f' % ( dt, dx/pph, rt )
- print t
- if self.report:
- self.report(t)
-
- def on_motion(self, event):
- if self.xydfunc:
- pos = event.GetPosition()
- self.xydfunc(pos)
-
-
- def const_list(self,const,len):
- return [const] * len
-
- def make_colormap(self):
- r = []
- r.extend(self.const_list(0,96))
- r.extend(range(0,255,4))
- r.extend(self.const_list(255,64))
- r.extend(range(255,128,-4))
-
- g = []
- g.extend(self.const_list(0,32))
- g.extend(range(0,255,4))
- g.extend(self.const_list(255,64))
- g.extend(range(255,0,-4))
- g.extend(self.const_list(0,32))
-
- b = range(128,255,4)
- b.extend(self.const_list(255,64))
- b.extend(range(255,0,-4))
- b.extend(self.const_list(0,96))
- return (r,g,b)
-
- def make_pens(self):
- (r,g,b) = self.make_colormap()
- self.rgb = numpy.transpose( numpy.array( (r,g,b) ).astype(numpy.int8) )
-
- def OnPaint(self, event):
- dc = wx.BufferedPaintDC(self)
- self.DoDrawing( dc )
-
- def DoDrawing(self,dc):
- w, h = self.GetClientSizeTuple()
- w = min( w, self.fftsink.fft_size )
- if w <= 0:
- return
-
- if dc is None:
- dc = wx.BufferedDC( wx.ClientDC(self), (w,h) )
-
- dc.SetBackground( wx.Brush( self.GetBackgroundColour(), wx.SOLID ) )
- dc.Clear()
-
- x, y = self.GetViewStart()
- x *= self.ppsh
-
- ih = min( h - self.h_scale, self.im_size[1] - self.im_cur )
- r = wx.Rect( x, self.im_cur, w, ih )
- bm = wx.BitmapFromImage( self.im.GetSubImage(r) )
- dc.DrawBitmap( bm, 0, self.h_scale )
- rem = min( self.im_size[1] - ih, h - ih - self.h_scale )
- if( rem > 0 ):
- r = wx.Rect( x, 0, w, rem )
- bm = wx.BitmapFromImage( self.im.GetSubImage(r) )
- dc.DrawBitmap( bm, 0, ih + self.h_scale )
-
- # Draw axis
- if self.baseband_freq != self.fftsink.baseband_freq:
- self.baseband_freq = self.fftsink.baseband_freq
- t = self.fftsink.sample_rate*w/float(self.fftsink.fft_size)
- self.ax_spec = axis_design( self.baseband_freq - t/2,
- self.baseband_freq + t/2, 7 )
- dc.SetFont( wx.SMALL_FONT )
- fo = self.baseband_freq
- po = self.fftsink.fft_size/2
- pph = self.fftsink.fft_size/float(self.fftsink.sample_rate)
- f = math.floor((fo-po/pph)/self.ax_spec[1])*self.ax_spec[1]
- while True:
- t = po + ( f - fo )*pph
- s = str( f*self.ax_spec[3] )
- e = dc.GetTextExtent( s )
- if t - e[1]/2 >= x + w:
- break
- dc.DrawText( s, t - x - e[0]/2, 0 )
- dc.DrawLine( t - x, e[1] - 1, t - x, self.h_scale )
- dt = self.ax_spec[1]/self.ax_spec[2]*pph
- for i in range(self.ax_spec[2]-1):
- t += dt
- if t >= x + w:
- break
- dc.DrawLine( t - x, e[1] + 1, t - x, self.h_scale )
- f += self.ax_spec[1]
-
- def const_list(self,const,len):
- a = [const]
- for i in range(1,len):
- a.append(const)
- return a
-
- def make_colormap(self):
- r = []
- r.extend(self.const_list(0,96))
- r.extend(range(0,255,4))
- r.extend(self.const_list(255,64))
- r.extend(range(255,128,-4))
-
- g = []
- g.extend(self.const_list(0,32))
- g.extend(range(0,255,4))
- g.extend(self.const_list(255,64))
- g.extend(range(255,0,-4))
- g.extend(self.const_list(0,32))
-
- b = range(128,255,4)
- b.extend(self.const_list(255,64))
- b.extend(range(255,0,-4))
- b.extend(self.const_list(0,96))
- return (r,g,b)
-
- def set_data (self, evt):
- dB = evt.data
- L = len (dB)
-
- if self.ofunc != None:
- self.ofunc(evt.data, L)
- #dc1 = wx.MemoryDC()
- #dc1.SelectObject(self.bm)
-
- # Scroll existing bitmap
- if 1:
- #dc1.Blit(0,1,self.bm_size[0],self.bm_size[1]-1,dc1,0,0,
- # wx.COPY,False,-1,-1)
- pass
- else:
- for i in range( self.bm_size[1]-1, 0, -1 ):
- dc1.Blit( 0, i, self.bm_size[0], 1, dc1, 0, i-1 )
-
- x = max(abs(self.fftsink.sample_rate), abs(self.fftsink.baseband_freq))
- if x >= 1e9:
- sf = 1e-9
- units = "GHz"
- elif x >= 1e6:
- sf = 1e-6
- units = "MHz"
- else:
- sf = 1e-3
- units = "kHz"
-
-
- if self.fftsink.input_is_real: # only plot 1/2 the points
- d_max = L/2
- p_width = 2
- else:
- d_max = L/2
- p_width = 1
-
- scale_factor = self.scale_factor
- dB -= self.ref_level
- dB *= scale_factor
- dB = dB.astype(numpy.int_).clip( min=0, max=255 )
- if self.fftsink.input_is_real: # real fft
- dB = numpy.array( ( dB[0:d_max][::-1], dB[0:d_max] ) )
- else: # complex fft
- dB = numpy.concatenate( ( dB[d_max:L], dB[0:d_max] ) )
-
- dB = self.rgb[dB]
- img = wx.ImageFromData( L, 1, dB.ravel().tostring() )
- #bm = wx.BitmapFromImage( img )
- #dc1.DrawBitmap( bm, 0, 0 )
- ibuf = self.im.GetDataBuffer()
- self.im_cur -= 1
- if self.im_cur < 0:
- self.im_cur = self.im_size[1] - 1
- start = 3*self.im_cur*self.im_size[0]
- ibuf[start:start+3*self.im_size[0]] = img.GetData()
-
- #del dc1
- self.DoDrawing(None)
-
- def on_average(self, evt):
- # print "on_average"
- self.fftsink.set_average(evt.IsChecked())
-
- def on_right_click(self, event):
- menu = self.popup_menu
- self.PopupMenu(menu, event.GetPosition())
-
-
- def build_popup_menu(self):
- id_ref_gain = wx.NewId()
- self.Bind( wx.EVT_MENU, self.on_ref_gain, id=id_ref_gain )
-
- # make a menu
- menu = wx.Menu()
- self.popup_menu = menu
- menu.Append( id_ref_gain, "Ref Level and Gain" )
- self.rg_dialog = None
-
- self.checkmarks = {
- #self.id_average : lambda : self.fftsink.average
- }
-
- def on_ref_gain( self, evt ):
- if self.rg_dialog == None:
- self.rg_dialog = rg_dialog( self.parent, self.set_ref_gain,
- ref=self.ref_level,
- span=256./self.scale_factor )
- self.rg_dialog.Show( True )
-
- def set_ref_gain( self, ref, span ):
- self.ref_level = ref
- self.scale_factor = 256/span
-
-class rg_dialog( wx.Dialog ):
- def __init__( self, parent, set_function, ref=0, span=256./5. ):
- wx.Dialog.__init__( self, parent, -1, "Waterfall Settings" )
- self.set_function = set_function
- #status_bar = wx.StatusBar( self, -1 )
-
- d_sizer = wx.BoxSizer( wx.VERTICAL ) # dialog sizer
- f_sizer = wx.BoxSizer( wx.VERTICAL ) # form sizer
- vs = 10
-
- #f_sizer.Add( fn_sizer, 0, flag=wx.TOP, border=10 )
-
- h_sizer = wx.BoxSizer( wx.HORIZONTAL )
- self.ref = tab_item( self, "Ref Level:", 4, "dB" )
- self.ref.ctrl.SetValue( "%d" % ref )
- h_sizer.Add((0,0),1)
- h_sizer.Add( self.ref, 0 )
- h_sizer.Add((0,0),1)
- self.span = tab_item( self, "Range:", 4, "dB" )
- self.span.ctrl.SetValue( "%d" % span )
- h_sizer.Add( self.span, 0 )
- h_sizer.Add((0,0),1)
- f_sizer.Add( h_sizer, 0, flag=wx.TOP|wx.EXPAND, border=vs )
-
- d_sizer.Add((0,0),1)
- d_sizer.Add( f_sizer, 0, flag=wx.ALIGN_CENTER_HORIZONTAL|wx.EXPAND )
- d_sizer.Add((0,0),1)
- d_sizer.Add((0,0),1)
-
- button_sizer = wx.BoxSizer( wx.HORIZONTAL )
- apply_button = wx.Button( self, -1, "Apply" )
- apply_button.Bind( wx.EVT_BUTTON, self.apply_evt )
- cancel_button = wx.Button( self, -1, "Cancel" )
- cancel_button.Bind( wx.EVT_BUTTON, self.cancel_evt )
- ok_button = wx.Button( self, -1, "OK" )
- ok_button.Bind( wx.EVT_BUTTON, self.ok_evt )
- button_sizer.Add((0,0),1)
- button_sizer.Add( apply_button, 0,
- flag=wx.ALIGN_CENTER_HORIZONTAL )
- button_sizer.Add((0,0),1)
- button_sizer.Add( cancel_button, 0,
- flag=wx.ALIGN_CENTER_HORIZONTAL )
- button_sizer.Add((0,0),1)
- button_sizer.Add( ok_button, 0,
- flag=wx.ALIGN_CENTER_HORIZONTAL )
- button_sizer.Add((0,0),1)
- d_sizer.Add( button_sizer, 0,
- flag=wx.EXPAND|wx.ALIGN_CENTER|wx.BOTTOM, border=30 )
- self.SetSizer( d_sizer )
-
- def apply_evt( self, evt ):
- self.do_apply()
-
- def cancel_evt( self, evt ):
- self.Show( False )
-
- def ok_evt( self, evt ):
- self.do_apply()
- self.Show( False )
-
- def do_apply( self ):
- r = float( self.ref.ctrl.GetValue() )
- g = float( self.span.ctrl.GetValue() )
- self.set_function( r, g )
-
-def next_up(v, seq):
- """
- Return the first item in seq that is > v.
- """
- for s in seq:
- if s > v:
- return s
- return v
-
-def next_down(v, seq):
- """
- Return the last item in seq that is < v.
- """
- rseq = list(seq[:])
- rseq.reverse()
-
- for s in rseq:
- if s < v:
- return s
- return v
-
-# One of many copies that should be consolidated . . .
-def tab_item( parent, label, chars, units, style=wx.TE_RIGHT, value="" ):
- s = wx.BoxSizer( wx.HORIZONTAL )
- s.Add( wx.StaticText( parent, -1, label ), 0,
- flag=wx.ALIGN_CENTER_VERTICAL )
- s.ctrl = wx.TextCtrl( parent, -1, style=style, value=value )
- s.ctrl.SetMinSize( ( (1.00+chars)*s.ctrl.GetCharWidth(),
- 1.25*s.ctrl.GetCharHeight() ) )
- s.Add( s.ctrl, -1, flag=wx.LEFT, border=3 )
- s.Add( wx.StaticText( parent, -1, units ), 0,
- flag=wx.ALIGN_CENTER_VERTICAL|wx.LEFT, border=1 )
- return s
-
-
-# ----------------------------------------------------------------
-# Standalone test app
-# ----------------------------------------------------------------
-
-class test_app_flow_graph (stdgui2.std_top_block):
- def __init__(self, frame, panel, vbox, argv):
- stdgui2.std_top_block.__init__ (self, frame, panel, vbox, argv)
-
- fft_size = 512
-
- # build our flow graph
- input_rate = 20.000e3
-
- # Generate a complex sinusoid
- src1 = gr.sig_source_c (input_rate, gr.GR_SIN_WAVE, 5.75e3, 1000)
- #src1 = gr.sig_source_c (input_rate, gr.GR_CONST_WAVE, 5.75e3, 1000)
-
- # We add these throttle blocks so that this demo doesn't
- # suck down all the CPU available. Normally you wouldn't use these.
- thr1 = gr.throttle(gr.sizeof_gr_complex, input_rate)
-
- sink1 = waterfall_sink_c (panel, title="Complex Data",
- fft_size=fft_size,
- sample_rate=input_rate, baseband_freq=0,
- size=(600,144) )
- vbox.Add (sink1.win, 1, wx.EXPAND)
- self.connect (src1, thr1, sink1)
-
- # generate a real sinusoid
- src2 = gr.sig_source_f (input_rate, gr.GR_SIN_WAVE, 5.75e3, 1000)
- #src2 = gr.sig_source_f (input_rate, gr.GR_CONST_WAVE, 5.75e3, 1000)
- thr2 = gr.throttle(gr.sizeof_float, input_rate)
- sink2 = waterfall_sink_f (panel, title="Real Data", fft_size=fft_size,
- sample_rate=input_rate, baseband_freq=0)
- vbox.Add (sink2.win, 1, wx.EXPAND)
- self.connect (src2, thr2, sink2)
-
-def main ():
- app = stdgui2.stdapp (test_app_flow_graph,
- "Waterfall Sink Test App")
- app.MainLoop ()
-
-if __name__ == '__main__':
- main ()
diff --git a/gr-radio-astronomy/src/python/run_tests.in b/gr-radio-astronomy/src/python/run_tests.in
deleted file mode 100644
index c382145a6..000000000
--- a/gr-radio-astronomy/src/python/run_tests.in
+++ /dev/null
@@ -1,10 +0,0 @@
-#!/bin/sh
-
-# 1st parameter is absolute path to component source directory
-# 2nd parameter is absolute path to component build directory
-# 3rd parameter is path to Python QA directory
-
-@top_builddir@/run_tests.sh \
- @abs_top_srcdir@/gr-radio-astronomy \
- @abs_top_builddir@/gr-radio-astronomy \
- @srcdir@
diff --git a/gr-radio-astronomy/src/python/usrp_psr_receiver.help b/gr-radio-astronomy/src/python/usrp_psr_receiver.help
deleted file mode 100644
index 5801f3fbb..000000000
--- a/gr-radio-astronomy/src/python/usrp_psr_receiver.help
+++ /dev/null
@@ -1,111 +0,0 @@
-This program is used to analyse pulsars of known parameters. It contains
- both a post-detector spectral display, and a "pulse profile" display.
- It has a built-in de-dispersion filter that will work up to DM=100 for
- 21cm observing, and up to DM=5 for 327Mhz observing.
-
-The program takes the following options:
-
- --rx-subdev-spec which USRP Rx side? A or B
-
- --decim USRP decimation rate use either 64 or 128
-
- --freq USRP daughtercard frequency
-
- --observing Actual observing frequency (default is to use the
- setting for --freq)
-
- --avg Averaging setting for spectral display--higher numbers
- equal more averaging. 25 to 40 is typical.
-
- --favg Pulse folding averaging. 2 to 5 is typical.
-
- --gain USRP daughtercard gain control
-
- --reflevel Reference level on pulse profile display
-
- --lowest Lowest spectral bin that is considered valid, in Hz
-
- --longitude Observer longitude: West is negative
-
- --latitude Observer latitude: South is negative
-
- --fft_size Size of FFT for post-detector spectrum: default is 1024
-
- --threshold Threshold (dB) to be considered a spectral "peak"
- This is relative to the average spectral level
-
- --lowpass Low pass frequency for post-detector spectral display
- 20-100 is typical
-
- --prefix Filename prefix to use for recording files
- Default is ./
-
- --pulsefreq The frequency of the expected pulses
- For sentimental reasons, this defaults to 0.748Hz
-
- --dm The DM
-
- --doppler The doppler shift, as a ratio
-
- --divbase The base of the Y/Div menu in pulsar display
-
- --division The initial Y/Div in pulsar display
-
-DM, Doppler, Gain, Frequency, and the averaging parameters can all be
- changed using the GUI at runtime.
-
-If latitude and longitude are set correctly, and the system time is
- correct, then the current LMST is displayed below the frequency
- input, updated once per second.
-
-Moving the mouse in the post-detector spectrum display shows you that
- point in the post-detector spectrum, both frequency and signal level.
-
-The post-detector spectrum is analysed, with results shown below
- "Best freq". It shows the spectral peaks, and computes their relationship.
- It shows the harmonic compliance among the peaks, as well as the average
- peak-to-peak distance.
-
-
-Here's a complete example for observing a pulsar with a frequency of
- 1.35Hz, at 431.5Mhz, using an IF of 10.7Mhz, and a DM of 12.431, using
- 1Mhz observing bandwidth:
-
-./usrp_psr_receiver.py --freq 10.7e6 --decim 64 --dm 12.431 --avg 35 \
- --pulsefreq 1.35 --fft_size 2048 --lowest 1.00 --gain 75 --threshold 11.5 \
- --observing 431.5e6 --reflevel 200 --division 100 --divbase 10 --favg 3 \
- --lowpass 20 --longitude -76.02 --latitude 44.95
-
-Since the observed pulsar is at 1.35Hz, a lowpass cutoff for the
- post-detector spectral display of 20Hz will be adequate. We
- tell the spectral analyser to use a threshold of 11.5dB above
- average when analysing spectral data, and set the epoch folder
- averager (pulse profile display) to use an average from 3 samples.
- Notice that our actual USRP/Daughtercard frequency is 10.7Mhz, while
- our observing frequency is 431.5Mhz--this is important in order for
- the DM de-dispersion calculations to be correct. We also set our
- latitude and longitude, so that logfiles and the LMST display
- will have the correct LMST in them.
-
-The entire complex baseband can be recorded, if the "Recording baseband"
- button is pressed. Filenames are generated dynamically, and a header
- file is produced giving observation parameters. The baseband data are
- recorded as octet pairs: one for I and one for Q. Pressing the button again
- turns off baseband recording. This baseband is "raw", so it will
- not have been de-dispersed. The data rate will be whatever the
- USRP was programmed to at the time (based on --decim).
-
- The files are: YYYYMMDDHHMM.pdat and YYYYMMDDHHMM.phdr
-
- The .phdr file contains ASCII header information describing the
- contents of the .pdat file.
-
-Similarly the raw, pre-folded, band-limited post-detector "audio" data can be
- recorded using the "Record Pulses" button. The data rate for these is
- currently 20Khz, recorded as short integers. Just like baseband recording,
- pressing the button again turns off pulse recording.
-
- The files are: YYYYMMDDHHMM.padat and YYMMDDHHMM.pahdr
-
- The .pahdr file is ascii text providing information about the contents
- of the corresponding .padat file.
diff --git a/gr-radio-astronomy/src/python/usrp_psr_receiver.py b/gr-radio-astronomy/src/python/usrp_psr_receiver.py
deleted file mode 100755
index 6ce4325a2..000000000
--- a/gr-radio-astronomy/src/python/usrp_psr_receiver.py
+++ /dev/null
@@ -1,1096 +0,0 @@
-#!/usr/bin/env python
-#
-# Copyright 2004,2005,2007 Free Software Foundation, Inc.
-#
-# This file is part of GNU Radio
-#
-# GNU Radio is free software; you can redistribute it and/or modify
-# it under the terms of the GNU General Public License as published by
-# the Free Software Foundation; either version 3, or (at your option)
-# any later version.
-#
-# GNU Radio is distributed in the hope that it will be useful,
-# but WITHOUT ANY WARRANTY; without even the implied warranty of
-# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-# GNU General Public License for more details.
-#
-# You should have received a copy of the GNU General Public License
-# along with GNU Radio; see the file COPYING. If not, write to
-# the Free Software Foundation, Inc., 51 Franklin Street,
-# Boston, MA 02110-1301, USA.
-#
-
-
-#
-#
-# Pulsar receiver application
-#
-# Performs both harmonic folding analysis
-# and epoch folding analysis
-#
-#
-from gnuradio import gr, gru, blks2, audio
-from usrpm import usrp_dbid
-from gnuradio import usrp, optfir
-from gnuradio import eng_notation
-from gnuradio.eng_option import eng_option
-from gnuradio.wxgui import stdgui2, ra_fftsink, ra_stripchartsink, form, slider
-from optparse import OptionParser
-import wx
-import sys
-import Numeric
-import numpy.fft
-import ephem
-import time
-import os
-import math
-
-
-class app_flow_graph(stdgui2.std_top_block):
- def __init__(self, frame, panel, vbox, argv):
- stdgui2.std_top_block.__init__(self, frame, panel, vbox, argv)
-
- self.frame = frame
- self.panel = panel
-
- parser = OptionParser(option_class=eng_option)
- parser.add_option("-R", "--rx-subdev-spec", type="subdev", default=(0, 0),
- help="select USRP Rx side A or B (default=A)")
- parser.add_option("-d", "--decim", type="int", default=16,
- help="set fgpa decimation rate to DECIM [default=%default]")
- parser.add_option("-f", "--freq", type="eng_float", default=None,
- help="set frequency to FREQ", metavar="FREQ")
- parser.add_option("-Q", "--observing", type="eng_float", default=0.0,
- help="set observing frequency to FREQ")
- parser.add_option("-a", "--avg", type="eng_float", default=1.0,
- help="set spectral averaging alpha")
- parser.add_option("-V", "--favg", type="eng_float", default=2.0,
- help="set folder averaging alpha")
- parser.add_option("-g", "--gain", type="eng_float", default=None,
- help="set gain in dB (default is midpoint)")
- parser.add_option("-l", "--reflevel", type="eng_float", default=30.0,
- help="Set pulse display reference level")
- parser.add_option("-L", "--lowest", type="eng_float", default=1.5,
- help="Lowest valid frequency bin")
- parser.add_option("-e", "--longitude", type="eng_float", default=-76.02, help="Set Observer Longitude")
- parser.add_option("-c", "--latitude", type="eng_float", default=44.85, help="Set Observer Latitude")
- parser.add_option("-F", "--fft_size", type="eng_float", default=1024, help="Size of FFT")
-
- parser.add_option ("-t", "--threshold", type="eng_float", default=2.5, help="pulsar threshold")
- parser.add_option("-p", "--lowpass", type="eng_float", default=100, help="Pulse spectra cutoff freq")
- parser.add_option("-P", "--prefix", default="./", help="File prefix")
- parser.add_option("-u", "--pulsefreq", type="eng_float", default=0.748, help="Observation pulse rate")
- parser.add_option("-D", "--dm", type="eng_float", default=1.0e-5, help="Dispersion Measure")
- parser.add_option("-O", "--doppler", type="eng_float", default=1.0, help="Doppler ratio")
- parser.add_option("-B", "--divbase", type="eng_float", default=20, help="Y/Div menu base")
- parser.add_option("-I", "--division", type="eng_float", default=100, help="Y/Div")
- parser.add_option("-A", "--audio_source", default="plughw:0,0", help="Audio input device spec")
- parser.add_option("-N", "--num_pulses", default=1, type="eng_float", help="Number of display pulses")
- (options, args) = parser.parse_args()
- if len(args) != 0:
- parser.print_help()
- sys.exit(1)
-
- self.show_debug_info = True
-
- self.reflevel = options.reflevel
- self.divbase = options.divbase
- self.division = options.division
- self.audiodev = options.audio_source
- self.mult = int(options.num_pulses)
-
- # Low-pass cutoff for post-detector filter
- # Set to 100Hz usually, since lots of pulsars fit in this
- # range
- self.lowpass = options.lowpass
-
- # What is lowest valid frequency bin in post-detector FFT?
- # There's some pollution very close to DC
- self.lowest_freq = options.lowest
-
- # What (dB) threshold to use in determining spectral candidates
- self.threshold = options.threshold
-
- # Filename prefix for recording file
- self.prefix = options.prefix
-
- # Dispersion Measure (DM)
- self.dm = options.dm
-
- # Doppler shift, as a ratio
- # 1.0 == no doppler shift
- # 1.005 == a little negative shift
- # 0.995 == a little positive shift
- self.doppler = options.doppler
-
- #
- # Input frequency and observing frequency--not necessarily the
- # same thing, if we're looking at the IF of some downconverter
- # that's ahead of the USRP and daughtercard. This distinction
- # is important in computing the correct de-dispersion filter.
- #
- self.frequency = options.freq
- if options.observing <= 0:
- self.observing_freq = options.freq
- else:
- self.observing_freq = options.observing
-
- # build the graph
- self.u = usrp.source_c(decim_rate=options.decim)
- self.u.set_mux(usrp.determine_rx_mux_value(self.u, options.rx_subdev_spec))
-
- #
- # Recording file, in case we ever need to record baseband data
- #
- self.recording = gr.file_sink(gr.sizeof_char, "/dev/null")
- self.recording_state = False
-
- self.pulse_recording = gr.file_sink(gr.sizeof_short, "/dev/null")
- self.pulse_recording_state = False
-
- #
- # We come up with recording turned off, but the user may
- # request recording later on
- self.recording.close()
- self.pulse_recording.close()
-
- #
- # Need these two for converting 12-bit baseband signals to 8-bit
- #
- self.tofloat = gr.complex_to_float()
- self.tochar = gr.float_to_char()
-
- # Need this for recording pulses (post-detector)
- self.toshort = gr.float_to_short()
-
-
- #
- # The spectral measurer sets this when it has a valid
- # average spectral peak-to-peak distance
- # We can then use this to program the parameters for the epoch folder
- #
- # We set a sentimental value here
- self.pulse_freq = options.pulsefreq
-
- # Folder runs at this raw sample rate
- self.folder_input_rate = 20000
-
- # Each pulse in the epoch folder is sampled at 128 times the nominal
- # pulse rate
- self.folding = 128
-
-
- #
- # Try to find candidate parameters for rational resampler
- #
- save_i = 0
- candidates = []
- for i in range(20,300):
- input_rate = self.folder_input_rate
- output_rate = int(self.pulse_freq * i)
- interp = gru.lcm(input_rate, output_rate) / input_rate
- decim = gru.lcm(input_rate, output_rate) / output_rate
- if (interp < 500 and decim < 250000):
- candidates.append(i)
-
- # We didn't find anything, bail!
- if (len(candidates) < 1):
- print "Couldn't converge on resampler parameters"
- sys.exit(1)
-
- #
- # Now try to find candidate with the least sampling error
- #
- mindiff = 999.999
- for i in candidates:
- diff = self.pulse_freq * i
- diff = diff - int(diff)
- if (diff < mindiff):
- mindiff = diff
- save_i = i
-
- # Recompute rates
- input_rate = self.folder_input_rate
- output_rate = int(self.pulse_freq * save_i)
-
- # Compute new interp and decim, based on best candidate
- interp = gru.lcm(input_rate, output_rate) / input_rate
- decim = gru.lcm(input_rate, output_rate) / output_rate
-
- # Save optimized folding parameters, used later
- self.folding = save_i
- self.interp = int(interp)
- self.decim = int(decim)
-
- # So that we can view N pulses in the pulse viewer window
- FOLD_MULT=self.mult
-
- # determine the daughterboard subdevice we're using
- self.subdev = usrp.selected_subdev(self.u, options.rx_subdev_spec)
- self.cardtype = self.u.daughterboard_id(0)
-
- # Compute raw input rate
- input_rate = self.u.adc_freq() / self.u.decim_rate()
-
- # BW==input_rate for complex data
- self.bw = input_rate
-
- #
- # Set baseband filter bandwidth if DBS_RX:
- #
- if self.cardtype == usrp_dbid.DBS_RX:
- lbw = input_rate / 2
- if lbw < 1.0e6:
- lbw = 1.0e6
- self.subdev.set_bw(lbw)
-
- #
- # We use this as a crude volume control for the audio output
- #
- #self.volume = gr.multiply_const_ff(10**(-1))
-
-
- #
- # Create location data for ephem package
- #
- self.locality = ephem.Observer()
- self.locality.long = str(options.longitude)
- self.locality.lat = str(options.latitude)
-
- #
- # What is the post-detector LPF cutoff for the FFT?
- #
- PULSAR_MAX_FREQ=int(options.lowpass)
-
- # First low-pass filters down to input_rate/FIRST_FACTOR
- # and decimates appropriately
- FIRST_FACTOR=int(input_rate/(self.folder_input_rate/2))
- first_filter = gr.firdes.low_pass (1.0,
- input_rate,
- input_rate/FIRST_FACTOR,
- input_rate/(FIRST_FACTOR*20),
- gr.firdes.WIN_HAMMING)
-
- # Second filter runs at the output rate of the first filter,
- # And low-pass filters down to PULSAR_MAX_FREQ*10
- #
- second_input_rate = int(input_rate/(FIRST_FACTOR/2))
- second_filter = gr.firdes.band_pass(1.0, second_input_rate,
- 0.10,
- PULSAR_MAX_FREQ*10,
- PULSAR_MAX_FREQ*1.5,
- gr.firdes.WIN_HAMMING)
-
- # Third filter runs at PULSAR_MAX_FREQ*20
- # and filters down to PULSAR_MAX_FREQ
- #
- third_input_rate = PULSAR_MAX_FREQ*20
- third_filter = gr.firdes_band_pass(1.0, third_input_rate,
- 0.10, PULSAR_MAX_FREQ,
- PULSAR_MAX_FREQ/10.0,
- gr.firdes.WIN_HAMMING)
-
-
- #
- # Create the appropriate FFT scope
- #
- self.scope = ra_fftsink.ra_fft_sink_f (panel,
- fft_size=int(options.fft_size), sample_rate=PULSAR_MAX_FREQ*2,
- title="Post-detector spectrum",
- ofunc=self.pulsarfunc, xydfunc=self.xydfunc, fft_rate=200)
-
- #
- # Tell scope we're looking from DC to PULSAR_MAX_FREQ
- #
- self.scope.set_baseband_freq (0.0)
-
-
- #
- # Setup stripchart for showing pulse profiles
- #
- hz = "%5.3fHz " % self.pulse_freq
- per = "(%5.3f sec)" % (1.0/self.pulse_freq)
- sr = "%d sps" % (int(self.pulse_freq*self.folding))
- times = " %d Pulse Intervals" % self.mult
- self.chart = ra_stripchartsink.stripchart_sink_f (panel,
- sample_rate=1,
- stripsize=self.folding*FOLD_MULT, parallel=True, title="Pulse Profiles: "+hz+per+times,
- xlabel="Seconds @ "+sr, ylabel="Level", autoscale=True,
- divbase=self.divbase, scaling=1.0/(self.folding*self.pulse_freq))
- self.chart.set_ref_level(self.reflevel)
- self.chart.set_y_per_div(self.division)
-
- # De-dispersion filter setup
- #
- # Do this here, just before creating the filter
- # that will use the taps.
- #
- ntaps = self.compute_disp_ntaps(self.dm,self.bw,self.observing_freq)
-
- # Taps for the de-dispersion filter
- self.disp_taps = Numeric.zeros(ntaps,Numeric.Complex64)
-
- # Compute the de-dispersion filter now
- self.compute_dispfilter(self.dm,self.doppler,
- self.bw,self.observing_freq)
-
- #
- # Call constructors for receive chains
- #
-
- #
- # Now create the FFT filter using the computed taps
- self.dispfilt = gr.fft_filter_ccc(1, self.disp_taps)
-
- #
- # Audio sink
- #
- #print "input_rate ", second_input_rate, "audiodev ", self.audiodev
- #self.audio = audio.sink(second_input_rate, self.audiodev)
-
- #
- # The three post-detector filters
- # Done this way to allow an audio path (up to 10Khz)
- # ...and also because going from xMhz down to ~100Hz
- # In a single filter doesn't seem to work.
- #
- self.first = gr.fir_filter_fff (FIRST_FACTOR/2, first_filter)
-
- p = second_input_rate / (PULSAR_MAX_FREQ*20)
- self.second = gr.fir_filter_fff (int(p), second_filter)
- self.third = gr.fir_filter_fff (10, third_filter)
-
- # Detector
- self.detector = gr.complex_to_mag_squared()
-
- self.enable_comb_filter = False
- # Epoch folder comb filter
- if self.enable_comb_filter == True:
- bogtaps = Numeric.zeros(512, Numeric.Float64)
- self.folder_comb = gr.fft_filter_ccc(1,bogtaps)
-
- # Rational resampler
- self.folder_rr = blks2.rational_resampler_fff(self.interp, self.decim)
-
- # Epoch folder bandpass
- bogtaps = Numeric.zeros(1, Numeric.Float64)
- self.folder_bandpass = gr.fir_filter_fff (1, bogtaps)
-
- # Epoch folder F2C/C2F
- self.folder_f2c = gr.float_to_complex()
- self.folder_c2f = gr.complex_to_float()
-
- # Epoch folder S2P
- self.folder_s2p = gr.serial_to_parallel (gr.sizeof_float,
- self.folding*FOLD_MULT)
-
- # Epoch folder IIR Filter (produces average pulse profiles)
- self.folder_iir = gr.single_pole_iir_filter_ff(1.0/options.favg,
- self.folding*FOLD_MULT)
-
- #
- # Set all the epoch-folder goop up
- #
- self.set_folding_params()
-
- #
- # Start connecting configured modules in the receive chain
- #
-
- # Connect raw USRP to de-dispersion filter, detector
- self.connect(self.u, self.dispfilt, self.detector)
-
- # Connect detector output to FIR LPF
- # in two stages, followed by the FFT scope
- self.connect(self.detector, self.first,
- self.second, self.third, self.scope)
-
- # Connect audio output
- #self.connect(self.first, self.volume)
- #self.connect(self.volume, (self.audio, 0))
- #self.connect(self.volume, (self.audio, 1))
-
- # Connect epoch folder
- if self.enable_comb_filter == True:
- self.connect (self.first, self.folder_bandpass, self.folder_rr,
- self.folder_f2c,
- self.folder_comb, self.folder_c2f,
- self.folder_s2p, self.folder_iir,
- self.chart)
-
- else:
- self.connect (self.first, self.folder_bandpass, self.folder_rr,
- self.folder_s2p, self.folder_iir, self.chart)
-
- # Connect baseband recording file (initially /dev/null)
- self.connect(self.u, self.tofloat, self.tochar, self.recording)
-
- # Connect pulse recording file (initially /dev/null)
- self.connect(self.first, self.toshort, self.pulse_recording)
-
- #
- # Build the GUI elements
- #
- self._build_gui(vbox)
-
- # Make GUI agree with command-line
- self.myform['average'].set_value(int(options.avg))
- self.myform['foldavg'].set_value(int(options.favg))
-
-
- # Make spectral averager agree with command line
- if options.avg != 1.0:
- self.scope.set_avg_alpha(float(1.0/options.avg))
- self.scope.set_average(True)
-
-
- # set initial values
-
- if options.gain is None:
- # if no gain was specified, use the mid-point in dB
- g = self.subdev.gain_range()
- options.gain = float(g[0]+g[1])/2
-
- if options.freq is None:
- # if no freq was specified, use the mid-point
- r = self.subdev.freq_range()
- options.freq = float(r[0]+r[1])/2
-
- self.set_gain(options.gain)
- #self.set_volume(-10.0)
-
- if not(self.set_freq(options.freq)):
- self._set_status_msg("Failed to set initial frequency")
-
- self.myform['decim'].set_value(self.u.decim_rate())
- self.myform['fs@usb'].set_value(self.u.adc_freq() / self.u.decim_rate())
- self.myform['dbname'].set_value(self.subdev.name())
- self.myform['DM'].set_value(self.dm)
- self.myform['Doppler'].set_value(self.doppler)
-
- #
- # Start the timer that shows current LMST on the GUI
- #
- self.lmst_timer.Start(1000)
-
-
- def _set_status_msg(self, msg):
- self.frame.GetStatusBar().SetStatusText(msg, 0)
-
- def _build_gui(self, vbox):
-
- def _form_set_freq(kv):
- return self.set_freq(kv['freq'])
-
- def _form_set_dm(kv):
- return self.set_dm(kv['DM'])
-
- def _form_set_doppler(kv):
- return self.set_doppler(kv['Doppler'])
-
- # Position the FFT or Waterfall
- vbox.Add(self.scope.win, 5, wx.EXPAND)
- vbox.Add(self.chart.win, 5, wx.EXPAND)
-
- # add control area at the bottom
- self.myform = myform = form.form()
- hbox = wx.BoxSizer(wx.HORIZONTAL)
- hbox.Add((7,0), 0, wx.EXPAND)
- vbox1 = wx.BoxSizer(wx.VERTICAL)
- myform['freq'] = form.float_field(
- parent=self.panel, sizer=vbox1, label="Center freq", weight=1,
- callback=myform.check_input_and_call(_form_set_freq, self._set_status_msg))
-
- vbox1.Add((3,0), 0, 0)
-
- # To show current Local Mean Sidereal Time
- myform['lmst_high'] = form.static_text_field(
- parent=self.panel, sizer=vbox1, label="Current LMST", weight=1)
- vbox1.Add((3,0), 0, 0)
-
- # To show current spectral cursor data
- myform['spec_data'] = form.static_text_field(
- parent=self.panel, sizer=vbox1, label="Pulse Freq", weight=1)
- vbox1.Add((3,0), 0, 0)
-
- # To show best pulses found in FFT output
- myform['best_pulse'] = form.static_text_field(
- parent=self.panel, sizer=vbox1, label="Best freq", weight=1)
- vbox1.Add((3,0), 0, 0)
-
- vboxBogus = wx.BoxSizer(wx.VERTICAL)
- vboxBogus.Add ((2,0), 0, wx.EXPAND)
- vbox2 = wx.BoxSizer(wx.VERTICAL)
- g = self.subdev.gain_range()
- myform['gain'] = form.slider_field(parent=self.panel, sizer=vbox2, label="RF Gain",
- weight=1,
- min=int(g[0]), max=int(g[1]),
- callback=self.set_gain)
-
- vbox2.Add((6,0), 0, 0)
- myform['average'] = form.slider_field(parent=self.panel, sizer=vbox2,
- label="Spectral Averaging", weight=1, min=1, max=200, callback=self.set_averaging)
- vbox2.Add((6,0), 0, 0)
- myform['foldavg'] = form.slider_field(parent=self.panel, sizer=vbox2,
- label="Folder Averaging", weight=1, min=1, max=20, callback=self.set_folder_averaging)
- vbox2.Add((6,0), 0, 0)
- #myform['volume'] = form.quantized_slider_field(parent=self.panel, sizer=vbox2,
- #label="Audio Volume", weight=1, range=(-20, 0, 0.5), callback=self.set_volume)
- #vbox2.Add((6,0), 0, 0)
- myform['DM'] = form.float_field(
- parent=self.panel, sizer=vbox2, label="DM", weight=1,
- callback=myform.check_input_and_call(_form_set_dm))
- vbox2.Add((6,0), 0, 0)
- myform['Doppler'] = form.float_field(
- parent=self.panel, sizer=vbox2, label="Doppler", weight=1,
- callback=myform.check_input_and_call(_form_set_doppler))
- vbox2.Add((6,0), 0, 0)
-
-
- # Baseband recording control
- buttonbox = wx.BoxSizer(wx.HORIZONTAL)
- self.record_control = form.button_with_callback(self.panel,
- label="Recording baseband: Off ",
- callback=self.toggle_recording)
- self.record_pulse_control = form.button_with_callback(self.panel,
- label="Recording pulses: Off ",
- callback=self.toggle_pulse_recording)
-
- buttonbox.Add(self.record_control, 0, wx.CENTER)
- buttonbox.Add(self.record_pulse_control, 0, wx.CENTER)
- vbox.Add(buttonbox, 0, wx.CENTER)
- hbox.Add(vbox1, 0, 0)
- hbox.Add(vboxBogus, 0, 0)
- hbox.Add(vbox2, wx.ALIGN_RIGHT, 0)
- vbox.Add(hbox, 0, wx.EXPAND)
-
- self._build_subpanel(vbox)
-
- self.lmst_timer = wx.PyTimer(self.lmst_timeout)
- self.lmst_timeout()
-
-
- def _build_subpanel(self, vbox_arg):
- # build a secondary information panel (sometimes hidden)
-
- # FIXME figure out how to have this be a subpanel that is always
- # created, but has its visibility controlled by foo.Show(True/False)
-
- if not(self.show_debug_info):
- return
-
- panel = self.panel
- vbox = vbox_arg
- myform = self.myform
-
- #panel = wx.Panel(self.panel, -1)
- #vbox = wx.BoxSizer(wx.VERTICAL)
-
- hbox = wx.BoxSizer(wx.HORIZONTAL)
- hbox.Add((5,0), 0)
- myform['decim'] = form.static_float_field(
- parent=panel, sizer=hbox, label="Decim")
-
- hbox.Add((5,0), 1)
- myform['fs@usb'] = form.static_float_field(
- parent=panel, sizer=hbox, label="Fs@USB")
-
- hbox.Add((5,0), 1)
- myform['dbname'] = form.static_text_field(
- parent=panel, sizer=hbox)
-
- hbox.Add((5,0), 1)
- myform['baseband'] = form.static_float_field(
- parent=panel, sizer=hbox, label="Analog BB")
-
- hbox.Add((5,0), 1)
- myform['ddc'] = form.static_float_field(
- parent=panel, sizer=hbox, label="DDC")
-
- hbox.Add((5,0), 0)
- vbox.Add(hbox, 0, wx.EXPAND)
-
-
-
- def set_freq(self, target_freq):
- """
- Set the center frequency we're interested in.
-
- @param target_freq: frequency in Hz
- @rypte: bool
-
- Tuning is a two step process. First we ask the front-end to
- tune as close to the desired frequency as it can. Then we use
- the result of that operation and our target_frequency to
- determine the value for the digital down converter.
- """
- r = usrp.tune(self.u, 0, self.subdev, target_freq)
-
- if r:
- self.myform['freq'].set_value(target_freq) # update displayed value
- self.myform['baseband'].set_value(r.baseband_freq)
- self.myform['ddc'].set_value(r.dxc_freq)
- # Adjust self.frequency, and self.observing_freq
- # We pick up the difference between the current self.frequency
- # and the just-programmed one, and use this to adjust
- # self.observing_freq. We have to do it this way to
- # make the dedispersion filtering work out properly.
- delta = target_freq - self.frequency
- self.frequency = target_freq
- self.observing_freq += delta
-
- # Now that we're adjusted, compute a new dispfilter, and
- # set the taps for the FFT filter.
- ntaps = self.compute_disp_ntaps(self.dm, self.bw, self.observing_freq)
- self.disp_taps = Numeric.zeros(ntaps, Numeric.Complex64)
- self.compute_dispfilter(self.dm,self.doppler,self.bw,
- self.observing_freq)
- self.dispfilt.set_taps(self.disp_taps)
-
- return True
-
- return False
-
- # Callback for gain-setting slider
- def set_gain(self, gain):
- self.myform['gain'].set_value(gain) # update displayed value
- self.subdev.set_gain(gain)
-
-
- #def set_volume(self, vol):
- #self.myform['volume'].set_value(vol)
- #self.volume.set_k((10**(vol/10))/8192)
-
- # Callback for spectral-averaging slider
- def set_averaging(self, avval):
- self.myform['average'].set_value(avval)
- self.scope.set_avg_alpha(1.0/(avval))
- self.scope.set_average(True)
-
- def set_folder_averaging(self, avval):
- self.myform['foldavg'].set_value(avval)
- self.folder_iir.set_taps(1.0/avval)
-
- # Timer callback to update LMST display
- def lmst_timeout(self):
- self.locality.date = ephem.now()
- sidtime = self.locality.sidereal_time()
- self.myform['lmst_high'].set_value(str(ephem.hours(sidtime)))
-
- #
- # Turn recording on/off
- # Called-back by "Recording" button
- #
- def toggle_recording(self):
- # Pick up current LMST
- self.locality.date = ephem.now()
- sidtime = self.locality.sidereal_time()
-
- # Pick up localtime, for generating filenames
- foo = time.localtime()
-
- # Generate filenames for both data and header file
- filename = "%04d%02d%02d%02d%02d.pdat" % (foo.tm_year, foo.tm_mon,
- foo.tm_mday, foo.tm_hour, foo.tm_min)
- hdrfilename = "%04d%02d%02d%02d%02d.phdr" % (foo.tm_year, foo.tm_mon,
- foo.tm_mday, foo.tm_hour, foo.tm_min)
-
- # Current recording? Flip state
- if (self.recording_state == True):
- self.recording_state = False
- self.record_control.SetLabel("Recording baseband: Off ")
- self.recording.close()
- # Not recording?
- else:
- self.recording_state = True
- self.record_control.SetLabel("Recording baseband to: "+filename)
-
- # Cause gr_file_sink object to accept new filename
- # note use of self.prefix--filename prefix from
- # command line (defaults to ./)
- #
- self.recording.open (self.prefix+filename)
-
- #
- # We open the header file as a regular file, write header data,
- # then close
- hdrf = open(self.prefix+hdrfilename, "w")
- hdrf.write("receiver center frequency: "+str(self.frequency)+"\n")
- hdrf.write("observing frequency: "+str(self.observing_freq)+"\n")
- hdrf.write("DM: "+str(self.dm)+"\n")
- hdrf.write("doppler: "+str(self.doppler)+"\n")
-
- hdrf.write("sidereal: "+str(ephem.hours(sidtime))+"\n")
- hdrf.write("bandwidth: "+str(self.u.adc_freq() / self.u.decim_rate())+"\n")
- hdrf.write("sample type: complex_char\n")
- hdrf.write("sample size: "+str(gr.sizeof_char*2)+"\n")
- hdrf.close()
- #
- # Turn recording on/off
- # Called-back by "Recording" button
- #
- def toggle_pulse_recording(self):
- # Pick up current LMST
- self.locality.date = ephem.now()
- sidtime = self.locality.sidereal_time()
-
- # Pick up localtime, for generating filenames
- foo = time.localtime()
-
- # Generate filenames for both data and header file
- filename = "%04d%02d%02d%02d%02d.padat" % (foo.tm_year, foo.tm_mon,
- foo.tm_mday, foo.tm_hour, foo.tm_min)
- hdrfilename = "%04d%02d%02d%02d%02d.pahdr" % (foo.tm_year, foo.tm_mon,
- foo.tm_mday, foo.tm_hour, foo.tm_min)
-
- # Current recording? Flip state
- if (self.pulse_recording_state == True):
- self.pulse_recording_state = False
- self.record_pulse_control.SetLabel("Recording pulses: Off ")
- self.pulse_recording.close()
- # Not recording?
- else:
- self.pulse_recording_state = True
- self.record_pulse_control.SetLabel("Recording pulses to: "+filename)
-
- # Cause gr_file_sink object to accept new filename
- # note use of self.prefix--filename prefix from
- # command line (defaults to ./)
- #
- self.pulse_recording.open (self.prefix+filename)
-
- #
- # We open the header file as a regular file, write header data,
- # then close
- hdrf = open(self.prefix+hdrfilename, "w")
- hdrf.write("receiver center frequency: "+str(self.frequency)+"\n")
- hdrf.write("observing frequency: "+str(self.observing_freq)+"\n")
- hdrf.write("DM: "+str(self.dm)+"\n")
- hdrf.write("doppler: "+str(self.doppler)+"\n")
- hdrf.write("pulse rate: "+str(self.pulse_freq)+"\n")
- hdrf.write("pulse sps: "+str(self.pulse_freq*self.folding)+"\n")
- hdrf.write("file sps: "+str(self.folder_input_rate)+"\n")
-
- hdrf.write("sidereal: "+str(ephem.hours(sidtime))+"\n")
- hdrf.write("bandwidth: "+str(self.u.adc_freq() / self.u.decim_rate())+"\n")
- hdrf.write("sample type: short\n")
- hdrf.write("sample size: 1\n")
- hdrf.close()
-
- # We get called at startup, and whenever the GUI "Set Folding params"
- # button is pressed
- #
- def set_folding_params(self):
- if (self.pulse_freq <= 0):
- return
-
- # Compute required sample rate
- self.sample_rate = int(self.pulse_freq*self.folding)
-
- # And the implied decimation rate
- required_decimation = int(self.folder_input_rate / self.sample_rate)
-
- # We also compute a new FFT comb filter, based on the expected
- # spectral profile of our pulse parameters
- #
- # FFT-based comb filter
- #
- N_COMB_TAPS=int(self.sample_rate*4)
- if N_COMB_TAPS > 2000:
- N_COMB_TAPS = 2000
- self.folder_comb_taps = Numeric.zeros(N_COMB_TAPS,Numeric.Complex64)
- fincr = (self.sample_rate)/float(N_COMB_TAPS)
- for i in range(0,len(self.folder_comb_taps)):
- self.folder_comb_taps[i] = complex(0.0, 0.0)
-
- freq = 0.0
- harmonics = [1.0,2.0,3.0,4.0,5.0,6.0,7.0]
- for i in range(0,len(self.folder_comb_taps)/2):
- for j in range(0,len(harmonics)):
- if abs(freq - harmonics[j]*self.pulse_freq) <= fincr:
- self.folder_comb_taps[i] = complex(4.0, 0.0)
- if harmonics[j] == 1.0:
- self.folder_comb_taps[i] = complex(8.0, 0.0)
- freq += fincr
-
- if self.enable_comb_filter == True:
- # Set the just-computed FFT comb filter taps
- self.folder_comb.set_taps(self.folder_comb_taps)
-
- # And compute a new decimated bandpass filter, to go in front
- # of the comb. Primary function is to decimate and filter down
- # to an exact-ish multiple of the target pulse rate
- #
- self.folding_taps = gr.firdes_band_pass (1.0, self.folder_input_rate,
- 0.10, self.sample_rate/2, 10,
- gr.firdes.WIN_HAMMING)
-
- # Set the computed taps for the bandpass/decimate filter
- self.folder_bandpass.set_taps (self.folding_taps)
- #
- # Record a spectral "hit" of a possible pulsar spectral profile
- #
- def record_hit(self,hits, hcavg, hcmax):
- # Pick up current LMST
- self.locality.date = ephem.now()
- sidtime = self.locality.sidereal_time()
-
- # Pick up localtime, for generating filenames
- foo = time.localtime()
-
- # Generate filenames for both data and header file
- hitfilename = "%04d%02d%02d%02d.phit" % (foo.tm_year, foo.tm_mon,
- foo.tm_mday, foo.tm_hour)
-
- hitf = open(self.prefix+hitfilename, "a")
- hitf.write("receiver center frequency: "+str(self.frequency)+"\n")
- hitf.write("observing frequency: "+str(self.observing_freq)+"\n")
- hitf.write("DM: "+str(self.dm)+"\n")
- hitf.write("doppler: "+str(self.doppler)+"\n")
-
- hitf.write("sidereal: "+str(ephem.hours(sidtime))+"\n")
- hitf.write("bandwidth: "+str(self.u.adc_freq() / self.u.decim_rate())+"\n")
- hitf.write("spectral peaks: "+str(hits)+"\n")
- hitf.write("HCM: "+str(hcavg)+" "+str(hcmax)+"\n")
- hitf.close()
-
- # This is a callback used by ra_fftsink.py (passed on creation of
- # ra_fftsink)
- # Whenever the user moves the cursor within the FFT display, this
- # shows the coordinate data
- #
- def xydfunc(self,xyv):
- s = "%.6fHz\n%.3fdB" % (xyv[0], xyv[1])
- if self.lowpass >= 500:
- s = "%.6fHz\n%.3fdB" % (xyv[0]*1000, xyv[1])
-
- self.myform['spec_data'].set_value(s)
-
- # This is another callback used by ra_fftsink.py (passed on creation
- # of ra_fftsink). We pass this as our "calibrator" function, but
- # we create interesting side-effects in the GUI.
- #
- # This function finds peaks in the FFT output data, and reports
- # on them through the "Best" text object in the GUI
- # It also computes the Harmonic Compliance Measure (HCM), and displays
- # that also.
- #
- def pulsarfunc(self,d,l):
- x = range(0,l)
- incr = float(self.lowpass)/float(l)
- incr = incr * 2.0
- bestdb = -50.0
- bestfreq = 0.0
- avg = 0
- dcnt = 0
- #
- # First, we need to find the average signal level
- #
- for i in x:
- if (i * incr) > self.lowest_freq and (i*incr) < (self.lowpass-2):
- avg += d[i]
- dcnt += 1
- # Set average signal level
- avg /= dcnt
- s2=" "
- findcnt = 0
- #
- # Then we find candidates that are greater than the user-supplied
- # threshold.
- #
- # We try to cluster "hits" whose whole-number frequency is the
- # same, and compute an average "hit" frequency.
- #
- lastint = 0
- hits=[]
- intcnt = 0
- freqavg = 0
- for i in x:
- freq = i*incr
- # If frequency within bounds, and the (dB-avg) value is above our
- # threshold
- if freq > self.lowest_freq and freq < self.lowpass-2 and (d[i] - avg) > self.threshold:
- # If we're finding a new whole-number frequency
- if lastint != int(freq):
- # Record "center" of this hit, if this is a new hit
- if lastint != 0:
- s2 += "%5.3fHz " % (freqavg/intcnt)
- hits.append(freqavg/intcnt)
- findcnt += 1
- lastint = int(freq)
- intcnt = 1
- freqavg = freq
- else:
- intcnt += 1
- freqavg += freq
- if (findcnt >= 14):
- break
-
- if intcnt > 1:
- s2 += "%5.3fHz " % (freqavg/intcnt)
- hits.append(freqavg/intcnt)
-
- #
- # Compute the HCM, by dividing each of the "hits" by each of the
- # other hits, and comparing the difference between a "perfect"
- # harmonic, and the observed frequency ratio.
- #
- measure = 0
- max_measure=0
- mcnt = 0
- avg_dist = 0
- acnt = 0
- for i in range(1,len(hits)):
- meas = hits[i]/hits[0] - int(hits[i]/hits[0])
- if abs((hits[i]-hits[i-1])-hits[0]) < 0.1:
- avg_dist += hits[i]-hits[i-1]
- acnt += 1
- if meas > 0.98 and meas < 1.0:
- meas = 1.0 - meas
- meas *= hits[0]
- if meas >= max_measure:
- max_measure = meas
- measure += meas
- mcnt += 1
- if mcnt > 0:
- measure /= mcnt
- if acnt > 0:
- avg_dist /= acnt
- if len(hits) > 1:
- measure /= mcnt
- s3="\nHCM: Avg %5.3fHz(%d) Max %5.3fHz Dist %5.3fHz(%d)" % (measure,mcnt,max_measure, avg_dist, acnt)
- if max_measure < 0.5 and len(hits) >= 2:
- self.record_hit(hits, measure, max_measure)
- self.avg_dist = avg_dist
- else:
- s3="\nHCM: --"
- s4="\nAvg dB: %4.2f" % avg
- self.myform['best_pulse'].set_value("("+s2+")"+s3+s4)
-
- # Since we are nominally a calibrator function for ra_fftsink, we
- # simply return what they sent us, untouched. A "real" calibrator
- # function could monkey with the data before returning it to the
- # FFT display function.
- return(d)
-
- #
- # Callback for the "DM" gui object
- #
- # We call compute_dispfilter() as appropriate to compute a new filter,
- # and then set that new filter into self.dispfilt.
- #
- def set_dm(self,dm):
- self.dm = dm
-
- ntaps = self.compute_disp_ntaps (self.dm, self.bw, self.observing_freq)
- self.disp_taps = Numeric.zeros(ntaps, Numeric.Complex64)
- self.compute_dispfilter(self.dm,self.doppler,self.bw,self.observing_freq)
- self.dispfilt.set_taps(self.disp_taps)
- self.myform['DM'].set_value(dm)
- return(dm)
-
- #
- # Callback for the "Doppler" gui object
- #
- # We call compute_dispfilter() as appropriate to compute a new filter,
- # and then set that new filter into self.dispfilt.
- #
- def set_doppler(self,doppler):
- self.doppler = doppler
-
- ntaps = self.compute_disp_ntaps (self.dm, self.bw, self.observing_freq)
- self.disp_taps = Numeric.zeros(ntaps, Numeric.Complex64)
- self.compute_dispfilter(self.dm,self.doppler,self.bw,self.observing_freq)
- self.dispfilt.set_taps(self.disp_taps)
- self.myform['Doppler'].set_value(doppler)
- return(doppler)
-
- #
- # Compute a de-dispersion filter
- # From Hankins, et al, 1975
- #
- # This code translated from dedisp_filter.c from Swinburne
- # pulsar software repository
- #
- def compute_dispfilter(self,dm,doppler,bw,centerfreq):
- npts = len(self.disp_taps)
- tmp = Numeric.zeros(npts, Numeric.Complex64)
- M_PI = 3.14159265358
- DM = dm/2.41e-10
-
- #
- # Because astronomers are a crazy bunch, the "standard" calcultion
- # is in Mhz, rather than Hz
- #
- centerfreq = centerfreq / 1.0e6
- bw = bw / 1.0e6
-
- isign = int(bw / abs (bw))
-
- # Center frequency may be doppler shifted
- cfreq = centerfreq / doppler
-
- # As well as the bandwidth..
- bandwidth = bw / doppler
-
- # Bandwidth divided among bins
- binwidth = bandwidth / npts
-
- # Delay is an "extra" parameter, in usecs, and largely
- # untested in the Swinburne code.
- delay = 0.0
-
- # This determines the coefficient of the frequency response curve
- # Linear in DM, but quadratic in center frequency
- coeff = isign * 2.0*M_PI * DM / (cfreq*cfreq)
-
- # DC to nyquist/2
- n = 0
- for i in range(0,int(npts/2)):
- freq = (n + 0.5) * binwidth
- phi = coeff*freq*freq/(cfreq+freq) + (2.0*M_PI*freq*delay)
- tmp[i] = complex(math.cos(phi), math.sin(phi))
- n += 1
-
- # -nyquist/2 to DC
- n = int(npts/2)
- n *= -1
- for i in range(int(npts/2),npts):
- freq = (n + 0.5) * binwidth
- phi = coeff*freq*freq/(cfreq+freq) + (2.0*M_PI*freq*delay)
- tmp[i] = complex(math.cos(phi), math.sin(phi))
- n += 1
-
- self.disp_taps = numpy.fft.ifft(tmp)
- return(self.disp_taps)
-
- #
- # Compute minimum number of taps required in de-dispersion FFT filter
- #
- def compute_disp_ntaps(self,dm,bw,freq):
- #
- # Dt calculations are in Mhz, rather than Hz
- # crazy astronomers....
- mbw = bw/1.0e6
- mfreq = freq/1.0e6
-
- f_lower = mfreq-(mbw/2)
- f_upper = mfreq+(mbw/2)
-
- # Compute smear time
- Dt = dm/2.41e-4 * (1.0/(f_lower*f_lower)-1.0/(f_upper*f_upper))
-
- # ntaps is now bandwidth*smeartime
- # Should be bandwidth*smeartime*2, but the Gnu Radio FFT filter
- # already expands it by a factor of 2
- ntaps = bw*Dt
- if ntaps < 64:
- ntaps = 64
- return(int(ntaps))
-
-def main ():
- app = stdgui2.stdapp(app_flow_graph, "RADIO ASTRONOMY PULSAR RECEIVER: $Revision$", nstatus=1)
- app.MainLoop()
-
-if __name__ == '__main__':
- main ()
diff --git a/gr-radio-astronomy/src/python/usrp_ra_receiver.help b/gr-radio-astronomy/src/python/usrp_ra_receiver.help
deleted file mode 100644
index 45a21e297..000000000
--- a/gr-radio-astronomy/src/python/usrp_ra_receiver.help
+++ /dev/null
@@ -1,90 +0,0 @@
-This program is used to take spectra and total power measurements.
- It records spectral and total-power data to external datalogging
- files.
-
-The program takes the following options:
-
- --rx-subdev-spec which USRP Rx side? A or B
-
- --decim USRP decimation rate: 8, 16, 32, and 64 are good
- (8Mhz, 4Mhz, 2Mhz, and 1Mhz bandwidth)
-
- --freq USRP daughtercard frequency
-
- --observing Actual observing frequency (default is to use the
- setting for --freq)
-
- --avg Averaging setting for spectral display--higher numbers
- equal more averaging. 25 to 40 is typical.
-
- --integ Total power integration time: seconds
-
- --gain USRP daughtercard gain control
-
- --reflevel Reference level on pulse profile display
-
- --longitude Observer longitude: West is negative
-
- --latitude Observer latitude: South is negative
-
- --fft_size Size of FFT for post-detector spectrum: default is 1024
-
- --prefix Filename prefix to use for data logging files
- Default is ./
-
- --divbase The base of the Y/Div menu in pulsar display
-
- --division The initial Y/Div in pulsar display
-
- --ylabel Y axis label
-
- --cfunc The function name prefix for the spectral and
- calibrator functions
-
- --waterfall Use waterfall, rather than regular spectral display
- NOT TESTED IN THIS APPLICATION
-
- --stripsize Size of the total-power stripchart, in samples
-
-There are two windows--a spectral window, and the total-power window.
- Moving the cursor around in the spectral window shows you the
- corresponding frequency and doppler shift. Left clicking in this
- window sets an interference marker, which sets a "zero" in the
- interference filter. Use the "clear interference" button to clear this.
-
-The total power window is updated at a fixed 2Hz rate, and grows from
- the left of the display.
-
-If latitude and longitude are set correctly, and system time is correct,
- then the current LMST is displayed, updated once per second.
-
-Averaging parameters, gain, and frequency can all be set from the GUI using
- the appropriate controls. You can also enter the current declination, which
- will appear in the datalogging files. This is useful both for mapping,
- and housekeeping purposes, particularly when you haven't looked at a datafile
- for quite some time.
-
-There are two datalog files produced by this program:
-
- YYYYMMDDHH.tpdat Total power data
-
- The date/time portion of the filename is referred to local time,
- rather than UTC or sidereal.
-
- First field is sidereal time when sample was taken
- Second field is total power datum
- Third field is declination in decimal degrees
-
- Samples are written once per second
-
- YYYYMMDDHH.sdat Spectral data
-
- The date/time portion of the filename is referred to local time,
- rather than UTC or sidereal.
-
- First field is sidereal time when spectrum was taken
- Second field is declination in decimal degrees
- Third field is complex spectral data--in the same order that FFTW3 library
- places bins: DC to bandwidth/2, followed by -bandwidth/2 to DC.
-
- Spectral snapshots are written once every 5 seconds
diff --git a/gr-radio-astronomy/src/python/usrp_ra_receiver.py b/gr-radio-astronomy/src/python/usrp_ra_receiver.py
deleted file mode 100755
index c37355d28..000000000
--- a/gr-radio-astronomy/src/python/usrp_ra_receiver.py
+++ /dev/null
@@ -1,1384 +0,0 @@
-#!/usr/bin/env python
-#
-# Copyright 2004,2005,2007 Free Software Foundation, Inc.
-#
-# This file is part of GNU Radio
-#
-# GNU Radio is free software; you can redistribute it and/or modify
-# it under the terms of the GNU General Public License as published by
-# the Free Software Foundation; either version 3, or (at your option)
-# any later version.
-#
-# GNU Radio is distributed in the hope that it will be useful,
-# but WITHOUT ANY WARRANTY; without even the implied warranty of
-# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-# GNU General Public License for more details.
-#
-# You should have received a copy of the GNU General Public License
-# along with GNU Radio; see the file COPYING. If not, write to
-# the Free Software Foundation, Inc., 51 Franklin Street,
-# Boston, MA 02110-1301, USA.
-#
-
-from gnuradio import gr, gru
-from gnuradio import usrp
-from usrpm import usrp_dbid
-from gnuradio import eng_notation
-from gnuradio.eng_option import eng_option
-from gnuradio.wxgui import stdgui2, ra_fftsink, ra_stripchartsink, ra_waterfallsink, form, slider
-from optparse import OptionParser
-import wx
-import sys
-import Numeric
-import time
-import numpy.fft
-import ephem
-
-class app_flow_graph(stdgui2.std_top_block):
- def __init__(self, frame, panel, vbox, argv):
- stdgui2.std_top_block.__init__(self, frame, panel, vbox, argv)
-
- self.frame = frame
- self.panel = panel
-
- parser = OptionParser(option_class=eng_option)
- parser.add_option("-R", "--rx-subdev-spec", type="subdev", default=(0, 0),
- help="select USRP Rx side A or B (default=A)")
- parser.add_option("-d", "--decim", type="int", default=16,
- help="set fgpa decimation rate to DECIM [default=%default]")
- parser.add_option("-f", "--freq", type="eng_float", default=None,
- help="set frequency to FREQ", metavar="FREQ")
- parser.add_option("-a", "--avg", type="eng_float", default=1.0,
- help="set spectral averaging alpha")
- parser.add_option("-i", "--integ", type="eng_float", default=1.0,
- help="set integration time")
- parser.add_option("-g", "--gain", type="eng_float", default=None,
- help="set gain in dB (default is midpoint)")
- parser.add_option("-l", "--reflevel", type="eng_float", default=30.0,
- help="Set Total power reference level")
- parser.add_option("-y", "--division", type="eng_float", default=0.5,
- help="Set Total power Y division size")
- parser.add_option("-e", "--longitude", type="eng_float", default=-76.02,help="Set Observer Longitude")
- parser.add_option("-c", "--latitude", type="eng_float", default=44.85,help="Set Observer Latitude")
- parser.add_option("-o", "--observing", type="eng_float", default=0.0,
- help="Set observing frequency")
- parser.add_option("-x", "--ylabel", default="dB", help="Y axis label")
- parser.add_option("-z", "--divbase", type="eng_float", default=0.025, help="Y Division increment base")
- parser.add_option("-v", "--stripsize", type="eng_float", default=2400, help="Size of stripchart, in 2Hz samples")
- parser.add_option("-F", "--fft_size", type="eng_float", default=1024, help="Size of FFT")
- parser.add_option("-N", "--decln", type="eng_float", default=999.99, help="Observing declination")
- parser.add_option("-X", "--prefix", default="./")
- parser.add_option("-M", "--fft_rate", type="eng_float", default=8.0, help="FFT Rate")
- parser.add_option("-A", "--calib_coeff", type="eng_float", default=1.0, help="Calibration coefficient")
- parser.add_option("-B", "--calib_offset", type="eng_float", default=0.0, help="Calibration coefficient")
- parser.add_option("-W", "--waterfall", action="store_true", default=False, help="Use Waterfall FFT display")
- parser.add_option("-S", "--setimode", action="store_true", default=False, help="Enable SETI processing of spectral data")
- parser.add_option("-K", "--setik", type="eng_float", default=1.5, help="K value for SETI analysis")
- parser.add_option("-T", "--setibandwidth", type="eng_float", default=12500, help="Instantaneous SETI observing bandwidth--must be divisor of 250Khz")
- parser.add_option("-Q", "--seti_range", type="eng_float", default=1.0e6, help="Total scan width, in Hz for SETI scans")
- parser.add_option("-Z", "--dual_mode", action="store_true",
- default=False, help="Dual-polarization mode")
- parser.add_option("-I", "--interferometer", action="store_true", default=False, help="Interferometer mode")
- parser.add_option("-D", "--switch_mode", action="store_true", default=False, help="Dicke Switching mode")
- parser.add_option("-P", "--reference_divisor", type="eng_float", default=1.0, help="Reference Divisor")
- parser.add_option("-U", "--ref_fifo", default=None)
- parser.add_option("-k", "--notch_taps", type="int", default=64, help="Number of notch taps")
- parser.add_option("-n", "--notches", action="store_true",
- default=False, help="Notch frequencies after all other args")
- parser.add_option("-Y", "--interface", default=None)
- parser.add_option("-H", "--mac_addr", default=None)
-
- # Added this documentation
-
- (options, args) = parser.parse_args()
-
- self.setimode = options.setimode
- self.dual_mode = options.dual_mode
- self.interferometer = options.interferometer
- self.normal_mode = False
- self.switch_mode = options.switch_mode
- self.switch_state = 0
- self.reference_divisor = options.reference_divisor
- self.ref_fifo = options.ref_fifo
- self.usrp2 = False
- self.decim = options.decim
- self.rx_subdev_spec = options.rx_subdev_spec
-
- if (options.interface != None and options.mac_addr != None):
- self.mac_addr = options.mac_addr
- self.interface = options.interface
- self.usrp2 = True
-
- self.NOTCH_TAPS = options.notch_taps
- self.notches = Numeric.zeros(self.NOTCH_TAPS,Numeric.Float64)
- # Get notch locations
- j = 0
- for i in args:
- self.notches[j] = float(i)
- j = j + 1
-
- self.use_notches = options.notches
-
- if (self.ref_fifo != None):
- self.ref_fifo_file = open (self.ref_fifo, "r")
-
- modecount = 0
- for modes in (self.dual_mode, self.interferometer):
- if (modes == True):
- modecount = modecount + 1
-
- if (modecount > 1):
- print "must select only 1 of --dual_mode, or --interferometer"
- sys.exit(1)
-
- self.chartneeded = True
-
- if (self.setimode == True):
- self.chartneeded = False
-
- if (self.setimode == True and self.interferometer == True):
- print "can't pick both --setimode and --interferometer"
- sys.exit(1)
-
- if (self.setimode == True and self.switch_mode == True):
- print "can't pick both --setimode and --switch_mode"
- sys.exit(1)
-
- if (self.interferometer == True and self.switch_mode == True):
- print "can't pick both --interferometer and --switch_mode"
- sys.exit(1)
-
- if (modecount == 0):
- self.normal_mode = True
-
- self.show_debug_info = True
-
- # Pick up waterfall option
- self.waterfall = options.waterfall
-
- # SETI mode stuff
- self.setimode = options.setimode
- self.seticounter = 0
- self.setik = options.setik
- self.seti_fft_bandwidth = int(options.setibandwidth)
-
- # Calculate binwidth
- binwidth = self.seti_fft_bandwidth / options.fft_size
-
- # Use binwidth, and knowledge of likely chirp rates to set reasonable
- # values for SETI analysis code. We assume that SETI signals will
- # chirp at somewhere between 0.10Hz/sec and 0.25Hz/sec.
- #
- # upper_limit is the "worst case"--that is, the case for which we have
- # to wait the longest to actually see any drift, due to the quantizing
- # on FFT bins.
- upper_limit = binwidth / 0.10
- self.setitimer = int(upper_limit * 2.00)
- self.scanning = True
-
- # Calculate the CHIRP values based on Hz/sec
- self.CHIRP_LOWER = 0.10 * self.setitimer
- self.CHIRP_UPPER = 0.25 * self.setitimer
-
- # Reset hit counters to 0
- self.hitcounter = 0
- self.s1hitcounter = 0
- self.s2hitcounter = 0
- self.avgdelta = 0
- # We scan through 2Mhz of bandwidth around the chosen center freq
- self.seti_freq_range = options.seti_range
- # Calculate lower edge
- self.setifreq_lower = options.freq - (self.seti_freq_range/2)
- self.setifreq_current = options.freq
- # Calculate upper edge
- self.setifreq_upper = options.freq + (self.seti_freq_range/2)
-
- # Maximum "hits" in a line
- self.nhits = 20
-
- # Number of lines for analysis
- self.nhitlines = 4
-
- # We change center frequencies based on nhitlines and setitimer
- self.setifreq_timer = self.setitimer * (self.nhitlines * 5)
-
- # Create actual timer
- self.seti_then = time.time()
-
- # The hits recording array
- self.hits_array = Numeric.zeros((self.nhits,self.nhitlines), Numeric.Float64)
- self.hit_intensities = Numeric.zeros((self.nhits,self.nhitlines), Numeric.Float64)
- # Calibration coefficient and offset
- self.calib_coeff = options.calib_coeff
- self.calib_offset = options.calib_offset
- if self.calib_offset < -750:
- self.calib_offset = -750
- if self.calib_offset > 750:
- self.calib_offset = 750
-
- if self.calib_coeff < 1:
- self.calib_coeff = 1
- if self.calib_coeff > 100:
- self.calib_coeff = 100
-
- self.integ = options.integ
- self.avg_alpha = options.avg
- self.gain = options.gain
- self.decln = options.decln
-
- # Set initial values for datalogging timed-output
- self.continuum_then = time.time()
- self.spectral_then = time.time()
-
-
- # build the graph
-
- self.subdev = [(0, 0), (0,0)]
-
- #
- # If SETI mode, we always run at maximum USRP decimation
- #
- if (self.setimode):
- options.decim = 256
-
- if (self.dual_mode == True and self.decim <= 4):
- print "Cannot use decim <= 4 with dual_mode"
- sys.exit(1)
-
- self.setup_usrp()
-
- # Set initial declination
- self.decln = options.decln
-
- input_rate = self.u.adc_freq() / self.u.decim_rate()
- self.bw = input_rate
- #
- # Set prefix for data files
- #
- self.prefix = options.prefix
-
- #
- # The lower this number, the fewer sample frames are dropped
- # in computing the FFT. A sampled approach is taken to
- # computing the FFT of the incoming data, which reduces
- # sensitivity. Increasing sensitivity inreases CPU loading.
- #
- self.fft_rate = options.fft_rate
-
- self.fft_size = int(options.fft_size)
-
- # This buffer is used to remember the most-recent FFT display
- # values. Used later by self.write_spectral_data() to write
- # spectral data to datalogging files, and by the SETI analysis
- # function.
- #
- self.fft_outbuf = Numeric.zeros(self.fft_size, Numeric.Float64)
-
- #
- # If SETI mode, only look at seti_fft_bandwidth
- # at a time.
- #
- if (self.setimode):
- self.fft_input_rate = self.seti_fft_bandwidth
-
- #
- # Build a decimating bandpass filter
- #
- self.fft_input_taps = gr.firdes.complex_band_pass (1.0,
- input_rate,
- -(int(self.fft_input_rate/2)), int(self.fft_input_rate/2), 200,
- gr.firdes.WIN_HAMMING, 0)
-
- #
- # Compute required decimation factor
- #
- decimation = int(input_rate/self.fft_input_rate)
- self.fft_bandpass = gr.fir_filter_ccc (decimation,
- self.fft_input_taps)
- else:
- self.fft_input_rate = input_rate
-
- # Set up FFT display
- if self.waterfall == False:
- self.scope = ra_fftsink.ra_fft_sink_c (panel,
- fft_size=int(self.fft_size), sample_rate=self.fft_input_rate,
- fft_rate=int(self.fft_rate), title="Spectral",
- ofunc=self.fft_outfunc, xydfunc=self.xydfunc)
- else:
- self.scope = ra_waterfallsink.waterfall_sink_c (panel,
- fft_size=int(self.fft_size), sample_rate=self.fft_input_rate,
- fft_rate=int(self.fft_rate), title="Spectral", ofunc=self.fft_outfunc, size=(1100, 600), xydfunc=self.xydfunc, ref_level=0, span=10)
-
- # Set up ephemeris data
- self.locality = ephem.Observer()
- self.locality.long = str(options.longitude)
- self.locality.lat = str(options.latitude)
-
- # We make notes about Sunset/Sunrise in Continuum log files
- self.sun = ephem.Sun()
- self.sunstate = "??"
-
- # Set up stripchart display
- tit = "Continuum"
- if (self.dual_mode != False):
- tit = "H+V Continuum"
- if (self.interferometer != False):
- tit = "East x West Correlation"
- self.stripsize = int(options.stripsize)
- if self.chartneeded == True:
- self.chart = ra_stripchartsink.stripchart_sink_f (panel,
- stripsize=self.stripsize,
- title=tit,
- xlabel="LMST Offset (Seconds)",
- scaling=1.0, ylabel=options.ylabel,
- divbase=options.divbase)
-
- # Set center frequency
- self.centerfreq = options.freq
-
- # Set observing frequency (might be different from actual programmed
- # RF frequency)
- if options.observing == 0.0:
- self.observing = options.freq
- else:
- self.observing = options.observing
-
- # Remember our input bandwidth
- self.bw = input_rate
-
- #
- #
- # The strip chart is fed at a constant 1Hz rate
- #
-
- #
- # Call constructors for receive chains
- #
-
- if (self.dual_mode == True):
- self.setup_dual (self.setimode)
-
- if (self.interferometer == True):
- self.setup_interferometer(self.setimode)
-
- if (self.normal_mode == True):
- self.setup_normal(self.setimode)
-
- if (self.setimode == True):
- self.setup_seti()
-
- self._build_gui(vbox)
-
- # Make GUI agree with command-line
- self.integ = options.integ
- if self.setimode == False:
- self.myform['integration'].set_value(int(options.integ))
- self.myform['offset'].set_value(self.calib_offset)
- self.myform['dcgain'].set_value(self.calib_coeff)
- self.myform['average'].set_value(int(options.avg))
-
-
- if self.setimode == False:
- # Make integrator agree with command line
- self.set_integration(int(options.integ))
-
- self.avg_alpha = options.avg
-
- # Make spectral averager agree with command line
- if options.avg != 1.0:
- self.scope.set_avg_alpha(float(1.0/options.avg))
- self.scope.set_average(True)
-
- if self.setimode == False:
- # Set division size
- self.chart.set_y_per_div(options.division)
- # Set reference(MAX) level
- self.chart.set_ref_level(options.reflevel)
-
- # set initial values
-
- if options.gain is None:
- # if no gain was specified, use the mid-point in dB
- g = self.subdev[0].gain_range()
- options.gain = float(g[0]+g[1])/2
-
- if options.freq is None:
- # if no freq was specified, use the mid-point
- r = self.subdev[0].freq_range()
- options.freq = float(r[0]+r[1])/2
-
- # Set the initial gain control
- self.set_gain(options.gain)
-
- if not(self.set_freq(options.freq)):
- self._set_status_msg("Failed to set initial frequency")
-
- # Set declination
- self.set_decln (self.decln)
-
-
- # RF hardware information
- self.myform['decim'].set_value(self.u.decim_rate())
- self.myform['USB BW'].set_value(self.u.adc_freq() / self.u.decim_rate())
- if (self.dual_mode == True):
- self.myform['dbname'].set_value(self.subdev[0].name()+'/'+self.subdev[1].name())
- else:
- self.myform['dbname'].set_value(self.subdev[0].name())
-
- # Set analog baseband filtering, if DBS_RX
- if self.cardtype == usrp_dbid.DBS_RX:
- lbw = (self.u.adc_freq() / self.u.decim_rate()) / 2
- if lbw < 1.0e6:
- lbw = 1.0e6
- self.subdev[0].set_bw(lbw)
- self.subdev[1].set_bw(lbw)
-
- # Start the timer for the LMST display and datalogging
- self.lmst_timer.Start(1000)
- if (self.switch_mode == True):
- self.other_timer.Start(330)
-
-
- def _set_status_msg(self, msg):
- self.frame.GetStatusBar().SetStatusText(msg, 0)
-
- def _build_gui(self, vbox):
-
- def _form_set_freq(kv):
- # Adjust current SETI frequency, and limits
- self.setifreq_lower = kv['freq'] - (self.seti_freq_range/2)
- self.setifreq_current = kv['freq']
- self.setifreq_upper = kv['freq'] + (self.seti_freq_range/2)
-
- # Reset SETI analysis timer
- self.seti_then = time.time()
- # Zero-out hits array when changing frequency
- self.hits_array[:,:] = 0.0
- self.hit_intensities[:,:] = -60.0
-
- return self.set_freq(kv['freq'])
-
- def _form_set_decln(kv):
- return self.set_decln(kv['decln'])
-
- # Position the FFT display
- vbox.Add(self.scope.win, 15, wx.EXPAND)
-
- if self.setimode == False:
- # Position the Total-power stripchart
- vbox.Add(self.chart.win, 15, wx.EXPAND)
-
- # add control area at the bottom
- self.myform = myform = form.form()
- hbox = wx.BoxSizer(wx.HORIZONTAL)
- hbox.Add((7,0), 0, wx.EXPAND)
- vbox1 = wx.BoxSizer(wx.VERTICAL)
- myform['freq'] = form.float_field(
- parent=self.panel, sizer=vbox1, label="Center freq", weight=1,
- callback=myform.check_input_and_call(_form_set_freq, self._set_status_msg))
-
- vbox1.Add((4,0), 0, 0)
-
- myform['lmst_high'] = form.static_text_field(
- parent=self.panel, sizer=vbox1, label="Current LMST", weight=1)
- vbox1.Add((4,0), 0, 0)
-
- if self.setimode == False:
- myform['spec_data'] = form.static_text_field(
- parent=self.panel, sizer=vbox1, label="Spectral Cursor", weight=1)
- vbox1.Add((4,0), 0, 0)
-
- vbox2 = wx.BoxSizer(wx.VERTICAL)
- if self.setimode == False:
- vbox3 = wx.BoxSizer(wx.VERTICAL)
- g = self.subdev[0].gain_range()
- myform['gain'] = form.slider_field(parent=self.panel, sizer=vbox2, label="RF Gain",
- weight=1,
- min=int(g[0]), max=int(g[1]),
- callback=self.set_gain)
-
- vbox2.Add((4,0), 0, 0)
- if self.setimode == True:
- max_savg = 100
- else:
- max_savg = 3000
- myform['average'] = form.slider_field(parent=self.panel, sizer=vbox2,
- label="Spectral Averaging (FFT frames)", weight=1, min=1, max=max_savg, callback=self.set_averaging)
-
- # Set up scan control button when in SETI mode
- if (self.setimode == True):
- # SETI scanning control
- buttonbox = wx.BoxSizer(wx.HORIZONTAL)
- self.scan_control = form.button_with_callback(self.panel,
- label="Scan: On ",
- callback=self.toggle_scanning)
-
- buttonbox.Add(self.scan_control, 0, wx.CENTER)
- vbox2.Add(buttonbox, 0, wx.CENTER)
-
- vbox2.Add((4,0), 0, 0)
-
- if self.setimode == False:
- myform['integration'] = form.slider_field(parent=self.panel, sizer=vbox2,
- label="Continuum Integration Time (sec)", weight=1, min=1, max=180, callback=self.set_integration)
-
- vbox2.Add((4,0), 0, 0)
-
- myform['decln'] = form.float_field(
- parent=self.panel, sizer=vbox2, label="Current Declination", weight=1,
- callback=myform.check_input_and_call(_form_set_decln))
- vbox2.Add((4,0), 0, 0)
-
- if self.setimode == False:
- myform['offset'] = form.slider_field(parent=self.panel, sizer=vbox3,
- label="Post-Detector Offset", weight=1, min=-750, max=750,
- callback=self.set_pd_offset)
- vbox3.Add((2,0), 0, 0)
- myform['dcgain'] = form.slider_field(parent=self.panel, sizer=vbox3,
- label="Post-Detector Gain", weight=1, min=1, max=100,
- callback=self.set_pd_gain)
- vbox3.Add((2,0), 0, 0)
- hbox.Add(vbox1, 0, 0)
- hbox.Add(vbox2, wx.ALIGN_RIGHT, 0)
-
- if self.setimode == False:
- hbox.Add(vbox3, wx.ALIGN_RIGHT, 0)
-
- vbox.Add(hbox, 0, wx.EXPAND)
-
- self._build_subpanel(vbox)
-
- self.lmst_timer = wx.PyTimer(self.lmst_timeout)
- self.other_timer = wx.PyTimer(self.other_timeout)
-
-
- def _build_subpanel(self, vbox_arg):
- # build a secondary information panel (sometimes hidden)
-
- # FIXME figure out how to have this be a subpanel that is always
- # created, but has its visibility controlled by foo.Show(True/False)
-
- if not(self.show_debug_info):
- return
-
- panel = self.panel
- vbox = vbox_arg
- myform = self.myform
-
- #panel = wx.Panel(self.panel, -1)
- #vbox = wx.BoxSizer(wx.VERTICAL)
-
- hbox = wx.BoxSizer(wx.HORIZONTAL)
- hbox.Add((5,0), 0)
- myform['decim'] = form.static_float_field(
- parent=panel, sizer=hbox, label="Decim")
-
- hbox.Add((5,0), 1)
- myform['USB BW'] = form.static_float_field(
- parent=panel, sizer=hbox, label="USB BW")
-
- hbox.Add((5,0), 1)
- myform['dbname'] = form.static_text_field(
- parent=panel, sizer=hbox)
-
- hbox.Add((5,0), 1)
- myform['baseband'] = form.static_float_field(
- parent=panel, sizer=hbox, label="Analog BB")
-
- hbox.Add((5,0), 1)
- myform['ddc'] = form.static_float_field(
- parent=panel, sizer=hbox, label="DDC")
-
- hbox.Add((5,0), 0)
- vbox.Add(hbox, 0, wx.EXPAND)
-
-
-
- def set_freq(self, target_freq):
- """
- Set the center frequency we're interested in.
-
- @param target_freq: frequency in Hz
-
- """
- #
- #
- r = usrp.tune(self.u, self.subdev[0].which(), self.subdev[0], target_freq)
- r = usrp.tune(self.u, self.subdev[1].which(), self.subdev[1], target_freq)
- if r:
- self.myform['freq'].set_value(target_freq) # update displayed value
- #
- # Make sure calibrator knows our target freq
- #
-
- # Remember centerfreq---used for doppler calcs
- delta = self.centerfreq - target_freq
- self.centerfreq = target_freq
- self.observing -= delta
- self.scope.set_baseband_freq (self.observing)
- self.myform['baseband'].set_value(r.baseband_freq)
- self.myform['ddc'].set_value(r.dxc_freq)
-
- if (self.use_notches):
- self.compute_notch_taps(self.notches)
- if self.dual_mode == False and self.interferometer == False:
- self.notch_filt.set_taps(self.notch_taps)
- else:
- self.notch_filt1.set_taps(self.notch_taps)
- self.notch_filt2.set_taps(self.notch_taps)
-
- return True
-
- return False
-
- def set_decln(self, dec):
- self.decln = dec
- self.myform['decln'].set_value(dec) # update displayed value
-
- def set_gain(self, gain):
- self.myform['gain'].set_value(gain) # update displayed value
- self.subdev[0].set_gain(gain)
- self.subdev[1].set_gain(gain)
- self.gain = gain
-
- def set_averaging(self, avval):
- self.myform['average'].set_value(avval)
- self.scope.set_avg_alpha(1.0/(avval))
- self.scope.set_average(True)
- self.avg_alpha = avval
-
- def set_integration(self, integval):
- if self.setimode == False:
- self.integrator.set_taps(1.0/((integval)*(self.bw/2)))
- self.myform['integration'].set_value(integval)
- self.integ = integval
-
- #
- # Timeout function
- # Used to update LMST display, as well as current
- # continuum value
- #
- # We also write external data-logging files here
- #
- def lmst_timeout(self):
- self.locality.date = ephem.now()
- if self.setimode == False:
- x = self.probe.level()
- sidtime = self.locality.sidereal_time()
- # LMST
- s = str(ephem.hours(sidtime)) + " " + self.sunstate
- # Continuum detector value
- if self.setimode == False:
- sx = "%7.4f" % x
- s = s + "\nDet: " + str(sx)
- else:
- sx = "%2d" % self.hitcounter
- s1 = "%2d" % self.s1hitcounter
- s2 = "%2d" % self.s2hitcounter
- sa = "%4.2f" % self.avgdelta
- sy = "%3.1f-%3.1f" % (self.CHIRP_LOWER, self.CHIRP_UPPER)
- s = s + "\nHits: " + str(sx) + "\nS1:" + str(s1) + " S2:" + str(s2)
- s = s + "\nAv D: " + str(sa) + "\nCh lim: " + str(sy)
-
- self.myform['lmst_high'].set_value(s)
-
- #
- # Write data out to recording files
- #
- if self.setimode == False:
- self.write_continuum_data(x,sidtime)
- self.write_spectral_data(self.fft_outbuf,sidtime)
-
- else:
- self.seti_analysis(self.fft_outbuf,sidtime)
- now = time.time()
- if ((self.scanning == True) and ((now - self.seti_then) > self.setifreq_timer)):
- self.seti_then = now
- self.setifreq_current = self.setifreq_current + self.fft_input_rate
- if (self.setifreq_current > self.setifreq_upper):
- self.setifreq_current = self.setifreq_lower
- self.set_freq(self.setifreq_current)
- # Make sure we zero-out the hits array when changing
- # frequency.
- self.hits_array[:,:] = 0.0
- self.hit_intensities[:,:] = 0.0
-
- def other_timeout(self):
- if (self.switch_state == 0):
- self.switch_state = 1
-
- elif (self.switch_state == 1):
- self.switch_state = 0
-
- if (self.switch_state == 0):
- self.mute.set_n(1)
- self.cmute.set_n(int(1.0e9))
-
- elif (self.switch_state == 1):
- self.mute.set_n(int(1.0e9))
- self.cmute.set_n(1)
-
- if (self.ref_fifo != "@@@@"):
- self.ref_fifo_file.write(str(self.switch_state)+"\n")
- self.ref_fifo_file.flush()
-
- self.avg_reference_value = self.cprobe.level()
-
- #
- # Set reference value
- #
- self.reference_level.set_k(-1.0 * (self.avg_reference_value/self.reference_divisor))
-
- def fft_outfunc(self,data,l):
- self.fft_outbuf=data
-
- def write_continuum_data(self,data,sidtime):
-
- # Create localtime structure for producing filename
- foo = time.localtime()
- pfx = self.prefix
- filenamestr = "%s/%04d%02d%02d%02d" % (pfx, foo.tm_year,
- foo.tm_mon, foo.tm_mday, foo.tm_hour)
-
- # Open the data file, appending
- continuum_file = open (filenamestr+".tpdat","a")
-
- flt = "%6.3f" % data
- inter = self.decln
- integ = self.integ
- fc = self.observing
- fc = fc / 1000000
- bw = self.bw
- bw = bw / 1000000
- ga = self.gain
-
- now = time.time()
-
- #
- # If time to write full header info (saves storage this way)
- #
- if (now - self.continuum_then > 20):
- self.sun.compute(self.locality)
- enow = ephem.now()
- sunset = self.locality.next_setting(self.sun)
- sunrise = self.locality.next_rising(self.sun)
- sun_insky = "Down"
- self.sunstate = "Dn"
- if ((sunrise < enow) and (enow < sunset)):
- sun_insky = "Up"
- self.sunstate = "Up"
- self.continuum_then = now
-
- continuum_file.write(str(ephem.hours(sidtime))+" "+flt+" Dn="+str(inter)+",")
- continuum_file.write("Ti="+str(integ)+",Fc="+str(fc)+",Bw="+str(bw))
- continuum_file.write(",Ga="+str(ga)+",Sun="+str(sun_insky)+"\n")
- else:
- continuum_file.write(str(ephem.hours(sidtime))+" "+flt+"\n")
-
- continuum_file.close()
- return(data)
-
- def write_spectral_data(self,data,sidtime):
-
- now = time.time()
- delta = 10
-
- # If time to write out spectral data
- # We don't write this out every time, in order to
- # save disk space. Since the spectral data are
- # typically heavily averaged, writing this data
- # "once in a while" is OK.
- #
- if (now - self.spectral_then >= delta):
- self.spectral_then = now
-
- # Get localtime structure to make filename from
- foo = time.localtime()
-
- pfx = self.prefix
- filenamestr = "%s/%04d%02d%02d%02d" % (pfx, foo.tm_year,
- foo.tm_mon, foo.tm_mday, foo.tm_hour)
-
- # Open the file
- spectral_file = open (filenamestr+".sdat","a")
-
- # Setup data fields to be written
- r = data
- inter = self.decln
- fc = self.observing
- fc = fc / 1000000
- bw = self.bw
- bw = bw / 1000000
- av = self.avg_alpha
-
- # Write those fields
- spectral_file.write("data:"+str(ephem.hours(sidtime))+" Dn="+str(inter)+",Fc="+str(fc)+",Bw="+str(bw)+",Av="+str(av))
- spectral_file.write (" [ ")
- for r in data:
- spectral_file.write(" "+str(r))
-
- spectral_file.write(" ]\n")
- spectral_file.close()
- return(data)
-
- return(data)
-
- def seti_analysis(self,fftbuf,sidtime):
- l = len(fftbuf)
- x = 0
- hits = []
- hit_intensities = []
- if self.seticounter < self.setitimer:
- self.seticounter = self.seticounter + 1
- return
- else:
- self.seticounter = 0
-
- # Run through FFT output buffer, computing standard deviation (Sigma)
- avg = 0
- # First compute average
- for i in range(0,l):
- avg = avg + fftbuf[i]
- avg = avg / l
-
- sigma = 0.0
- # Then compute standard deviation (Sigma)
- for i in range(0,l):
- d = fftbuf[i] - avg
- sigma = sigma + (d*d)
-
- sigma = Numeric.sqrt(sigma/l)
-
- #
- # Snarfle through the FFT output buffer again, looking for
- # outlying data points
-
- start_f = self.observing - (self.fft_input_rate/2)
- current_f = start_f
- l = len(fftbuf)
- f_incr = self.fft_input_rate / l
- hit = -1
-
- # -nyquist to DC
- for i in range(l/2,l):
- #
- # If current FFT buffer has an item that exceeds the specified
- # sigma
- #
- if ((fftbuf[i] - avg) > (self.setik * sigma)):
- hits.append(current_f)
- hit_intensities.append(fftbuf[i])
- current_f = current_f + f_incr
-
- # DC to nyquist
- for i in range(0,l/2):
- #
- # If current FFT buffer has an item that exceeds the specified
- # sigma
- #
- if ((fftbuf[i] - avg) > (self.setik * sigma)):
- hits.append(current_f)
- hit_intensities.append(fftbuf[i])
- current_f = current_f + f_incr
-
- # No hits
- if (len(hits) <= 0):
- return
-
-
- #
- # OK, so we have some hits in the FFT buffer
- # They'll have a rather substantial gauntlet to run before
- # being declared a real "hit"
- #
-
- # Update stats
- self.s1hitcounter = self.s1hitcounter + len(hits)
-
- # Weed out buffers with an excessive number of
- # signals above Sigma
- if (len(hits) > self.nhits):
- return
-
-
- # Weed out FFT buffers with apparent multiple narrowband signals
- # separated significantly in frequency. This means that a
- # single signal spanning multiple bins is OK, but a buffer that
- # has multiple, apparently-separate, signals isn't OK.
- #
- last = hits[0]
- ns2 = 1
- for i in range(1,len(hits)):
- if ((hits[i] - last) > (f_incr*3.0)):
- return
- last = hits[i]
- ns2 = ns2 + 1
-
- self.s2hitcounter = self.s2hitcounter + ns2
-
- #
- # Run through all available hit buffers, computing difference between
- # frequencies found there, if they're all within the chirp limits
- # declare a good hit
- #
- good_hit = False
- f_ds = Numeric.zeros(self.nhitlines, Numeric.Float64)
- avg_delta = 0
- k = 0
- for i in range(0,min(len(hits),len(self.hits_array[:,0]))):
- f_ds[0] = abs(self.hits_array[i,0] - hits[i])
- for j in range(1,len(f_ds)):
- f_ds[j] = abs(self.hits_array[i,j] - self.hits_array[i,0])
- avg_delta = avg_delta + f_ds[j]
- k = k + 1
-
- if (self.seti_isahit (f_ds)):
- good_hit = True
- self.hitcounter = self.hitcounter + 1
- break
-
- if (avg_delta/k < (self.seti_fft_bandwidth/2)):
- self.avgdelta = avg_delta / k
-
- # Save 'n shuffle hits
- # Old hit buffers percolate through the hit buffers
- # (there are self.nhitlines of these buffers)
- # and then drop off the end
- # A consequence is that while the nhitlines buffers are filling,
- # you can get some absurd values for self.avgdelta, because some
- # of the buffers are full of zeros
- for i in range(self.nhitlines,1):
- self.hits_array[:,i] = self.hits_array[:,i-1]
- self.hit_intensities[:,i] = self.hit_intensities[:,i-1]
-
- for i in range(0,len(hits)):
- self.hits_array[i,0] = hits[i]
- self.hit_intensities[i,0] = hit_intensities[i]
-
- # Finally, write the hits/intensities buffer
- if (good_hit):
- self.write_hits(sidtime)
-
- return
-
- def seti_isahit(self,fdiffs):
- truecount = 0
-
- for i in range(0,len(fdiffs)):
- if (fdiffs[i] >= self.CHIRP_LOWER and fdiffs[i] <= self.CHIRP_UPPER):
- truecount = truecount + 1
-
- if truecount == len(fdiffs):
- return (True)
- else:
- return (False)
-
- def write_hits(self,sidtime):
- # Create localtime structure for producing filename
- foo = time.localtime()
- pfx = self.prefix
- filenamestr = "%s/%04d%02d%02d%02d" % (pfx, foo.tm_year,
- foo.tm_mon, foo.tm_mday, foo.tm_hour)
-
- # Open the data file, appending
- hits_file = open (filenamestr+".seti","a")
-
- # Write sidtime first
- hits_file.write(str(ephem.hours(sidtime))+" "+str(self.decln)+" ")
-
- #
- # Then write the hits/hit intensities buffers with enough
- # "syntax" to allow parsing by external (not yet written!)
- # "stuff".
- #
- for i in range(0,self.nhitlines):
- hits_file.write(" ")
- for j in range(0,self.nhits):
- hits_file.write(str(self.hits_array[j,i])+":")
- hits_file.write(str(self.hit_intensities[j,i])+",")
- hits_file.write("\n")
- hits_file.close()
- return
-
- def xydfunc(self,func,xyv):
- if self.setimode == True:
- return
- magn = int(Numeric.log10(self.observing))
- if (magn == 6 or magn == 7 or magn == 8):
- magn = 6
- dfreq = xyv[0] * pow(10.0,magn)
- if func == 0:
- ratio = self.observing / dfreq
- vs = 1.0 - ratio
- vs *= 299792.0
- if magn >= 9:
- xhz = "Ghz"
- elif magn >= 6:
- xhz = "Mhz"
- elif magn <= 5:
- xhz = "Khz"
- s = "%.6f%s\n%.3fdB" % (xyv[0], xhz, xyv[1])
- s2 = "\n%.3fkm/s" % vs
- self.myform['spec_data'].set_value(s+s2)
- else:
- tmpnotches = Numeric.zeros(self.NOTCH_TAPS,Numeric.Float64)
- delfreq = -1
- if self.use_notches == True:
- for i in range(0,len(self.notches)):
- if self.notches[i] != 0 and abs(self.notches[i] - dfreq) < ((self.bw/self.NOTCH_TAPS)/2.0):
- delfreq = i
- break
- j = 0
- for i in range(0,len(self.notches)):
- if (i != delfreq):
- tmpnotches[j] = self.notches[i]
- j = j + 1
- if (delfreq == -1):
- for i in range(0,len(tmpnotches)):
- if (int(tmpnotches[i]) == 0):
- tmpnotches[i] = dfreq
- break
- self.notches = tmpnotches
- self.compute_notch_taps(self.notches)
- if self.dual_mode == False and self.interferometer == False:
- self.notch_filt.set_taps(self.notch_taps)
- else:
- self.notch_filt1.set_taps(self.notch_taps)
- self.notch_filt2.set_taps(self.notch_taps)
-
- def xydfunc_waterfall(self,pos):
- lower = self.observing - (self.seti_fft_bandwidth / 2)
- upper = self.observing + (self.seti_fft_bandwidth / 2)
- binwidth = self.seti_fft_bandwidth / 1024
- s = "%.6fMHz" % ((lower + (pos.x*binwidth)) / 1.0e6)
- self.myform['spec_data'].set_value(s)
-
- def toggle_cal(self):
- if (self.calstate == True):
- self.calstate = False
- self.u.write_io(0,0,(1<<15))
- self.calibrator.SetLabel("Calibration Source: Off")
- else:
- self.calstate = True
- self.u.write_io(0,(1<<15),(1<<15))
- self.calibrator.SetLabel("Calibration Source: On")
-
- def toggle_annotation(self):
- if (self.annotate_state == True):
- self.annotate_state = False
- self.annotation.SetLabel("Annotation: Off")
- else:
- self.annotate_state = True
- self.annotation.SetLabel("Annotation: On")
- #
- # Turn scanning on/off
- # Called-back by "Recording" button
- #
- def toggle_scanning(self):
- # Current scanning? Flip state
- if (self.scanning == True):
- self.scanning = False
- self.scan_control.SetLabel("Scan: Off")
- # Not scanning
- else:
- self.scanning = True
- self.scan_control.SetLabel("Scan: On ")
-
- def set_pd_offset(self,offs):
- self.myform['offset'].set_value(offs)
- self.calib_offset=offs
- x = self.calib_coeff / 100.0
- self.cal_offs.set_k(offs*(x*8000))
-
- def set_pd_gain(self,gain):
- self.myform['dcgain'].set_value(gain)
- self.cal_mult.set_k(gain*0.01)
- self.calib_coeff = gain
- x = gain/100.0
- self.cal_offs.set_k(self.calib_offset*(x*8000))
-
- def compute_notch_taps(self,notchlist):
- tmptaps = Numeric.zeros(self.NOTCH_TAPS,Numeric.Complex64)
- binwidth = self.bw / self.NOTCH_TAPS
-
- for i in range(0,self.NOTCH_TAPS):
- tmptaps[i] = complex(1.0,0.0)
-
- for i in notchlist:
- diff = i - self.observing
- if int(i) == 0:
- break
- if ((i < (self.observing - self.bw/2)) or (i > (self.observing + self.bw/2))):
- continue
- if (diff > 0):
- idx = diff / binwidth
- idx = round(idx)
- idx = int(idx)
- if (idx < 0 or idx > (self.NOTCH_TAPS/2)):
- break
- tmptaps[idx] = complex(0.0, 0.0)
-
- if (diff < 0):
- idx = -diff / binwidth
- idx = round(idx)
- idx = (self.NOTCH_TAPS/2) - idx
- idx = int(idx+(self.NOTCH_TAPS/2))
- if (idx < 0 or idx >= (self.NOTCH_TAPS)):
- break
- tmptaps[idx] = complex(0.0, 0.0)
-
- self.notch_taps = numpy.fft.ifft(tmptaps)
-
- #
- # Setup common pieces of radiometer mode
- #
- def setup_radiometer_common(self,n):
- # The IIR integration filter for post-detection
- self.integrator = gr.single_pole_iir_filter_ff(1.0)
- self.integrator.set_taps (1.0/self.bw)
-
- if (self.use_notches == True):
- self.compute_notch_taps(self.notches)
- if (n == 2):
- self.notch_filt1 = gr.fft_filter_ccc(1, self.notch_taps)
- self.notch_filt2 = gr.fft_filter_ccc(1, self.notch_taps)
- else:
- self.notch_filt = gr.fft_filter_ccc(1, self.notch_taps)
-
-
- # Signal probe
- self.probe = gr.probe_signal_f()
-
- #
- # Continuum calibration stuff
- #
- x = self.calib_coeff/100.0
- self.cal_mult = gr.multiply_const_ff(self.calib_coeff/100.0)
- self.cal_offs = gr.add_const_ff(self.calib_offset*(x*8000))
-
- #
- # Mega decimator after IIR filter
- #
- if (self.switch_mode == False):
- self.keepn = gr.keep_one_in_n(gr.sizeof_float, self.bw)
- else:
- self.keepn = gr.keep_one_in_n(gr.sizeof_float, int(self.bw/2))
-
- #
- # For the Dicke-switching scheme
- #
- #self.switch = gr.multiply_const_ff(1.0)
-
- #
- if (self.switch_mode == True):
- self.vector = gr.vector_sink_f()
- self.swkeep = gr.keep_one_in_n(gr.sizeof_float, int(self.bw/3))
- self.mute = gr.keep_one_in_n(gr.sizeof_float, 1)
- self.cmute = gr.keep_one_in_n(gr.sizeof_float, int(1.0e9))
- self.cintegrator = gr.single_pole_iir_filter_ff(1.0/(self.bw/2))
- self.cprobe = gr.probe_signal_f()
- else:
- self.mute = gr.multiply_const_ff(1.0)
-
-
- self.avg_reference_value = 0.0
- self.reference_level = gr.add_const_ff(0.0)
-
- #
- # Setup ordinary single-channel radiometer mode
- #
- def setup_normal(self, setimode):
-
- self.setup_radiometer_common(1)
-
- self.head = self.u
- if (self.use_notches == True):
- self.shead = self.notch_filt
- else:
- self.shead = self.u
-
- if setimode == False:
-
- self.detector = gr.complex_to_mag_squared()
- self.connect(self.shead, self.scope)
-
- if (self.use_notches == False):
- self.connect(self.head, self.detector, self.mute, self.reference_level,
- self.integrator, self.keepn, self.cal_mult, self.cal_offs, self.chart)
- else:
- self.connect(self.head, self.notch_filt, self.detector, self.mute, self.reference_level,
- self.integrator, self.keepn, self.cal_mult, self.cal_offs, self.chart)
-
- self.connect(self.cal_offs, self.probe)
-
- #
- # Add a side-chain detector chain, with a different integrator, for sampling
- # The reference channel data
- # This is used to derive the offset value for self.reference_level, used above
- #
- if (self.switch_mode == True):
- self.connect(self.detector, self.cmute, self.cintegrator, self.swkeep, self.cprobe)
-
- return
-
- #
- # Setup dual-channel (two antenna, usual orthogonal polarity probes in the same waveguide)
- #
- def setup_dual(self, setimode):
-
- self.setup_radiometer_common(2)
-
- self.di = gr.deinterleave(gr.sizeof_gr_complex)
- self.addchans = gr.add_cc ()
- self.detector = gr.add_ff ()
- self.h_power = gr.complex_to_mag_squared()
- self.v_power = gr.complex_to_mag_squared()
- self.connect (self.u, self.di)
-
- if (self.use_notches == True):
- self.connect((self.di, 0), self.notch_filt1, (self.addchans, 0))
- self.connect((self.di, 1), self.notch_filt2, (self.addchans, 1))
- else:
- #
- # For spectral, adding the two channels works, assuming no gross
- # phase or amplitude error
- self.connect ((self.di, 0), (self.addchans, 0))
- self.connect ((self.di, 1), (self.addchans, 1))
-
- #
- # Connect heads of spectral and total-power chains
- #
- if (self.use_notches == False):
- self.head = self.di
- else:
- self.head = (self.notch_filt1, self.notch_filt2)
-
- self.shead = self.addchans
-
- if (setimode == False):
- #
- # For dual-polarization mode, we compute the sum of the
- # powers on each channel, after they've been detected
- #
- self.detector = gr.add_ff()
-
- #
- # In dual-polarization mode, we compute things a little differently
- # In effect, we have two radiometer chains, terminating in an adder
- #
- if self.use_notches == True:
- self.connect(self.notch_filt1, self.h_power)
- self.connect(self.notch_filt2, self.v_power)
- else:
- self.connect((self.head, 0), self.h_power)
- self.connect((self.head, 1), self.v_power)
- self.connect(self.h_power, (self.detector, 0))
- self.connect(self.v_power, (self.detector, 1))
- self.connect(self.detector, self.mute, self.reference_level,
- self.integrator, self.keepn, self.cal_mult, self.cal_offs, self.chart)
- self.connect(self.cal_offs, self.probe)
- self.connect(self.shead, self.scope)
-
- #
- # Add a side-chain detector chain, with a different integrator, for sampling
- # The reference channel data
- # This is used to derive the offset value for self.reference_level, used above
- #
- if (self.switch_mode == True):
- self.connect(self.detector, self.cmute, self.cintegrator, self.swkeep, self.cprobe)
- return
-
- #
- # Setup correlating interferometer mode
- #
- def setup_interferometer(self, setimode):
- self.setup_radiometer_common(2)
-
- self.di = gr.deinterleave(gr.sizeof_gr_complex)
- self.connect (self.u, self.di)
- self.corr = gr.multiply_cc()
- self.c2f = gr.complex_to_float()
-
- self.shead = (self.di, 0)
-
- # Channel 0 to multiply port 0
- # Channel 1 to multiply port 1
- if (self.use_notches == False):
- self.connect((self.di, 0), (self.corr, 0))
- self.connect((self.di, 1), (self.corr, 1))
- else:
- self.connect((self.di, 0), self.notch_filt1, (self.corr, 0))
- self.connect((self.di, 1), self.notch_filt2, (self.corr, 0))
-
- #
- # Multiplier (correlator) to complex-to-float, followed by integrator, etc
- #
- self.connect(self.corr, self.c2f, self.integrator, self.keepn, self.cal_mult, self.cal_offs, self.chart)
-
- #
- # FFT scope gets only 1 channel
- # FIX THIS, by cross-correlating the *outputs* of two different FFTs, then display
- # Funky!
- #
- self.connect(self.shead, self.scope)
-
- #
- # Output of correlator/integrator chain to probe
- #
- self.connect(self.cal_offs, self.probe)
-
- return
-
- #
- # Setup SETI mode
- #
- def setup_seti(self):
- self.connect (self.shead, self.fft_bandpass, self.scope)
- return
-
- def setup_usrp(self):
-
- if (self.usrp2 == False):
- if (self.dual_mode == False and self.interferometer == False):
- if (self.decim > 4):
- self.u = usrp.source_c(decim_rate=self.decim,fusb_block_size=8192)
- else:
- self.u = usrp.source_c(decim_rate=self.decim,fusb_block_size=8192, fpga_filename="std_4rx_0tx.rbf")
- self.u.set_mux(usrp.determine_rx_mux_value(self.u, self.rx_subdev_spec))
- # determine the daughterboard subdevice we're using
- self.subdev[0] = usrp.selected_subdev(self.u, self.rx_subdev_spec)
- self.subdev[1] = self.subdev[0]
- self.cardtype = self.subdev[0].dbid()
- else:
- self.u=usrp.source_c(decim_rate=self.decim, nchan=2,fusb_block_size=8192)
- self.subdev[0] = usrp.selected_subdev(self.u, (0, 0))
- self.subdev[1] = usrp.selected_subdev(self.u, (1, 0))
- self.cardtype = self.subdev[0].dbid()
- self.u.set_mux(0x32103210)
- c1 = self.subdev[0].name()
- c2 = self.subdev[1].name()
- if (c1 != c2):
- print "Must have identical cardtypes for --dual_mode or --interferometer"
- sys.exit(1)
- #
- # Set 8-bit mode
- #
-
- width = 8
- shift = 8
- format = self.u.make_format(width, shift)
- r = self.u.set_format(format)
- else:
- if (self.dual_mode == True or self.interferometer == True):
- print "Cannot use dual_mode or interferometer with single USRP2"
- sys.exit(1)
- self.u = usrp2.source_32fc(self.interface, self.mac_addr)
- self.u.set_decim (self.decim)
- self.cardtype = self.u.daughterboard_id()
-
-def main ():
- app = stdgui2.stdapp(app_flow_graph, "RADIO ASTRONOMY SPECTRAL/CONTINUUM RECEIVER: $Revision$", nstatus=1)
- app.MainLoop()
-
-if __name__ == '__main__':
- main ()