summaryrefslogtreecommitdiff
path: root/Turbines_by_Compressors_And_Fans/8-Flow_Through_Cascades.ipynb
blob: ec3e817559b414ab6f79b70882a93c37df868ae3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
{
"cells": [
 {
		   "cell_type": "markdown",
	   "metadata": {},
	   "source": [
       "# Chapter 8: Flow Through Cascades"
	   ]
	},
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 8.1: Calculation_on_a_compressor_cascade.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"// scilab Code Exa 8.1 Calculation on a compressor cascade\n",
"\n",
"V1=75; // Absolute Velocity of air at entry in m/s\n",
"alpha1=48; // air angle at entry\n",
"alpha2=25; // air angle at exit\n",
"p=1.1; // pitch-chord ratio\n",
"delps=11; // stagnation pressure loss in mm W.G.\n",
"ro=1.25; // density of air in kg/m3\n",
"g=9.81;\n",
"a=0.5*(tand(alpha1)+tand(alpha2)); \n",
"alpham=atand(a);\n",
"b=0.5*ro*(V1^2);\n",
"Y=delps*g/b;\n",
"disp (Y,'the loss coefficient is')\n",
"c=(cosd(alpham)^3)/(cosd(alpha1)^2);\n",
"C_D=p*Y*c;\n",
"disp (C_D,'the drag coefficient is')\n",
"d=2*p*(tand(alpha1)-tand(alpha2))*cosd(alpham);\n",
"e=C_D*tand(alpham);\n",
"C_L=d-e;\n",
"disp (C_L,'the Lift coefficient is')\n",
"f=(cosd(alpha1)^2)/(cosd(alpha2)^2);\n",
"C_ps=1-f;\n",
"disp (C_ps,'the Ideal pressure recovery coefficient is')\n",
"C_pa=C_ps-Y;\n",
"disp (C_pa,'the Actual pressure recovery coefficient is')\n",
"n_D=C_pa/C_ps;\n",
"disp (n_D,'the Diffuser efficiency is')\n",
"n_dmax=1-(2*C_D/C_L);\n",
"disp (n_dmax,'the Maximum Diffuser efficiency is')"
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 8.2: Calculation_on_a_turbine_blade_row_cascade.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"// scilab Code Exa 8.2 Calculation on a turbine blade row cascade\n",
"\n",
"beta1=35; //  blade angle at entry\n",
"beta2=55; // blade angle at exit\n",
"i=5; // incidence\n",
"delta=2.5; // deviation\n",
"alpha1=beta1+i; // air angle at entry\n",
"alpha2=beta2-delta; // air angle at exit\n",
"t_c=0.3; // maximum thickness-chord ratio(t/l)\n",
"a_r=2.5; // aspect ratio\n",
"\n",
"//part(a)optimum pitch-chord ratio from Zweifels relation\n",
"C_z=0.8; // from Zweifel's relation \n",
"p_c=C_z/(2*(cosd(alpha2)^2)*(tand(alpha1)+tand(alpha2)));\n",
"disp (p_c,'(a)the optimum pitch-chord ratio from Zweifels relation is')\n",
"\n",
"//part(b) loss coefficient from Soderbergs and Hawthorne relations\n",
"ep=alpha1+alpha2; // deflection angle\n",
"Zeeta=0.075;\n",
"b=(1+Zeeta)*(0.975+(0.075/a_r))\n",
"zeeta=b-1;\n",
"disp (zeeta,'(b)(i)the loss coefficient from Soderbergs relation is')\n",
"z_p=0.025*(1+((ep/90)^2)); // Hawthorne's relation\n",
"disp (z_p,'(b)(ii)the loss coefficient from Hawthorne relation is')\n",
"z=(1+(3.2/a_r))*z_p; // the total cascade loss coefficient\n",
"Y=0.5*(z+zeeta); \n",
"\n",
"// part(c)drag coefficient\n",
"alpham=atand(0.5*(tand(alpha2)-tand(alpha1)));\n",
"C_D=p_c*Y*(cosd(alpham)^3)/(cosd(alpha2)^2);\n",
"disp (C_D,'(c)the drag coefficient is')\n",
"\n",
"// part(d)Lift coefficient\n",
"C_L=(2*p_c*(tand(alpha1)+tand(alpha2))*cosd(alpham))+(C_D*tand(alpham));\n",
"disp (C_L,'(d)the Lift coefficient is')"
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 8.3: Calculation_on_a_compressor_cascade.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"// scilab Code Exa 8.3 Calculation on a compressor cascade\n",
"theta=25; // Camber angle\n",
"gamma_a=30; // stagger angle\n",
"i=5; // incidence\n",
"t_c=0.031; // momentum thickness-chord ratio(t/l)\n",
"p_c=1; // pitch-chord ratio\n",
"\n",
"//part(a)cascade blade angles\n",
"beta1=((2*gamma_a)+theta)*0.5; //  blade angle at entry\n",
"beta2=((2*gamma_a)-theta)*0.5; // blade angle at exit\n",
"disp ('(a)therefore, the blade angles are')\n",
"disp ('degree',beta1,'beta1=')\n",
"disp ('degree',beta2,'beta2=')\n",
"\n",
"//part(b) the nominal air angles\n",
"alpha1=beta1+i; // air angle at entry\n",
"alpha2=atand(tand(alpha1)-(1.55/(1+(1.5*p_c)))); // air angle at exit\n",
"disp ('(b)therefore, the air angles are')\n",
"disp ('degree',alpha1,'alpha1=')\n",
"disp ('degree',alpha2,'alpha2=')\n",
"\n",
"//part(c) stagnation pressure loss coefficient\n",
"Y=2*t_c*p_c*(cosd(alpha1)^2)/(cosd(alpha2)^3);\n",
"disp (Y,'(c)the stagnation pressure loss coefficient is')\n",
"\n",
"// part(d)drag coefficient\n",
"alpham=atand(0.5*(tand(alpha1)+tand(alpha2)));\n",
"C_D=p_c*Y*(cosd(alpham)^3)/(cosd(alpha1)^2);\n",
"disp (C_D,'(d)the drag coefficient is')\n",
"\n",
"// part(e)Lift coefficient\n",
"C_L=(2*p_c*(tand(alpha1)-tand(alpha2))*cosd(alpham))-(C_D*tand(alpham));\n",
"disp (C_L,'(e)the Lift coefficient is')"
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 8.4: Calculation_on_a_blower_type_annular_cascade_tunnel.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"// scilab Code Exa 8.4 blower type annular cascade tunnel\n",
"\n",
"t=35;\n",
"T=t+273;  // test Temperature in Kelvin\n",
"p=1.02; //  test Pressure in bar\n",
"dm=50/100; // mean diameter of the impeller blade in m\n",
"b=15/100; // blade length in m\n",
"n_o=0.6; // stage efficiency\n",
"R=287;\n",
"c=100; // Maximum Velocity upstream of the cascade in m/s\n",
"ro=p*10e4/(R*T); // density of air in kg/m3\n",
"\n",
"// part(a) determining the total pressure developed by the blower\n",
"d_h=0.5*ro*(c^2);\n",
"loss=0.1*d_h;\n",
"delp=d_h+loss;\n",
"disp ('mm W.G.' ,delp/9.81,'(a)the pressure developed is')\n",
"\n",
"// part (b) determining the discharge\n",
"A=%pi*dm*b; // the annulus cross-sectional area \n",
"Q=c*A;\n",
"disp ('m3/min' ,Q*60,'(b)the discharge is')\n",
"\n",
"// part (c) determining the power required to drive the blower\n",
"P=Q*delp/(n_o*10e2);\n",
"disp('kW',P,'(c)Power required to drive the blower is')"
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 8.5: Calculation_on_a_compressor_type_radial_cascade_tunnel.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"// scilab Code Exa 8.5 compressor type radial cascade tunnel\n",
"\n",
"M=0.7; // Mach Number\n",
"pr=0.721; // pr=pt/p0 From isentropic gas tables\n",
"t_opt=0.911; // t_opt=Tt/T0\n",
"pa=1.013; //  Atmospheric Pressure in bar\n",
"Ta=306; // in K\n",
"n_c=0.65; // efficiency\n",
"R=288;\n",
"gamma=1.4;\n",
"alpha=30;\n",
"dm=45/100; // mean diameter of the impeller blade in m\n",
"b=10/100; // blade width in m\n",
"cp_a=1.008; // Specific Heat of air at Constant Pressure in kJ/(kgK)\n",
"\n",
"// part(a) pressure ratio of the compressor\n",
"pr_c=1/pr;\n",
"disp(pr_c,'(a)pressure ratio of the compressor is')\n",
"\n",
"// part(b) stagnation pressure in the settling chamber\n",
"p02=pa*pr_c;\n",
"disp('bar',p02,'(b)stagnation pressure in the settling chamber is')\n",
"\n",
"// part(c)test section conditions(static pressure, temperature and velocity)\n",
"n=(gamma-1)/gamma;\n",
"T02s=Ta*(pr_c^((gamma-1)/gamma));\n",
"T02=Ta+((T02s-Ta)/n_c);\n",
"T_t=t_opt*T02;\n",
"p_t=pr*p02;\n",
"c_t=M*sqrt(gamma*R*T_t);\n",
"disp('(c)test section conditions are given by: ')\n",
"disp('bar',p_t,'static pressure of air in the test section is')\n",
"disp('K',T_t,'static temperature of air in the test section is')\n",
"disp('m/s',c_t,'velocity of air in the test section is')\n",
"\n",
"// part(d) determining mass flow rate\n",
"c_r=c_t*sind(alpha);\n",
"ro_t=p_t*1e5/(R*T_t); // density of air in kg/m3\n",
"A_t=%pi*dm*b;\n",
"m=ro_t*A_t*c_r;\n",
"disp('kg/s',m,'(d) mass flow rate of compressor is')\n",
"\n",
"// part (e) determining the power required to drive the air compressor\n",
"delh_s=cp_a*(T02-Ta);\n",
"P=m*delh_s;\n",
"disp('kW',P,'(e)Power required to drive the air compressor is')"
   ]
   }
],
"metadata": {
		  "kernelspec": {
		   "display_name": "Scilab",
		   "language": "scilab",
		   "name": "scilab"
		  },
		  "language_info": {
		   "file_extension": ".sce",
		   "help_links": [
			{
			 "text": "MetaKernel Magics",
			 "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
			}
		   ],
		   "mimetype": "text/x-octave",
		   "name": "scilab",
		   "version": "0.7.1"
		  }
		 },
		 "nbformat": 4,
		 "nbformat_minor": 0
}