summaryrefslogtreecommitdiff
path: root/Turbines_by_Compressors_And_Fans/6-Fluid_dynamics.ipynb
blob: 561a4cbbb78b29f1b56a335b1b0381051e114ca1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
{
"cells": [
 {
		   "cell_type": "markdown",
	   "metadata": {},
	   "source": [
       "# Chapter 6: Fluid dynamics"
	   ]
	},
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 6.1: inward_flow_radial_turbine_32000rpm.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"// scilab Code Exa 6.1 inward flow radial turbine 32000rpm\n",
"P=150; // Power Output in kW\n",
"N=32e3; // Speed in RPM\n",
"d1=20/100; // outer diameter of the impeller in m\n",
"d2=8/100; // inner diameter of the impeller in m\n",
"V1=387; // Absolute Velocity of gas at entry in m/s\n",
"V2=193; // Absolute Velocity of gas at exit in m/s\n",
"\n",
"// part(a) determining mass flow rate\n",
"u1=%pi*d1*N/60;\n",
"u2=d2*u1/d1;\n",
"w_at=u1^2/10e2;\n",
"m=P/w_at;\n",
"disp ('kg/s' ,m,'(a)mass flow rate is')\n",
"\n",
"// part (b) determining the percentage energy transfer due to the change of radius\n",
"n=((u1^2-u2^2)/2e3)/w_at; \n",
"disp ('%',n*100,'(b)percentage energy transfer due to the change of radius is')"
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 6.2: radially_tipped_Centrifugal_blower_3000rpm.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"// scilab Code Exa 6.2 radially tipped Centrifugal blower 3000rpm\n",
"P=150; // Power Output in kW\n",
"N=3e3; // Speed in RPM\n",
"d2=40/100; // outer diameter of the impeller in m\n",
"d1=25/100; // inner diameter of the impeller in m\n",
"b=8/100; // impeller width at entry in m\n",
"n_st=0.7; // stage efficiency\n",
"V1=22.67; // Absolute Velocity at entry in m/s\n",
"ro=1.25; // density of air in kg/m3\n",
"\n",
"// part(a) determining the pressure developed\n",
"u2=%pi*d2*N/60;\n",
"u1=d1*u2/d2;\n",
"w_ac=u2^2;\n",
"delh_s=n_st*w_ac;\n",
"delp=ro*delh_s;\n",
"disp ('mm W.G.' ,delp/9.81,'(a)the pressure developed is')\n",
"\n",
"// part (b) determining the power required\n",
"A1=%pi*d1*b;\n",
"m=ro*V1*A1;\n",
"P=m*w_ac/10e2;\n",
"disp('kW',P,'(b)Power required is')"
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 6.3: Calculation_on_an_axial_flow_fan.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"// scilab Code Exa 6.3 Calculation on an axial flow fan\n",
"N=1.47e3; // Speed in RPM\n",
"d=30/100; // Mean diameter of the impeller in m\n",
"ro=1.25; // density of air in kg/m3\n",
"\n",
"// part(b) determining the pressure rise across the fan\n",
"u=%pi*d*N/60;\n",
"w_c=u^2/3;\n",
"delp=ro*w_c;\n",
"disp ('mm W.G.' ,delp/9.81,'(b)the pressure rise across the fan is')"
   ]
   }
],
"metadata": {
		  "kernelspec": {
		   "display_name": "Scilab",
		   "language": "scilab",
		   "name": "scilab"
		  },
		  "language_info": {
		   "file_extension": ".sce",
		   "help_links": [
			{
			 "text": "MetaKernel Magics",
			 "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
			}
		   ],
		   "mimetype": "text/x-octave",
		   "name": "scilab",
		   "version": "0.7.1"
		  }
		 },
		 "nbformat": 4,
		 "nbformat_minor": 0
}