diff options
Diffstat (limited to 'Turbines_by_Compressors_And_Fans/6-Fluid_dynamics.ipynb')
-rw-r--r-- | Turbines_by_Compressors_And_Fans/6-Fluid_dynamics.ipynb | 136 |
1 files changed, 136 insertions, 0 deletions
diff --git a/Turbines_by_Compressors_And_Fans/6-Fluid_dynamics.ipynb b/Turbines_by_Compressors_And_Fans/6-Fluid_dynamics.ipynb new file mode 100644 index 0000000..561a4cb --- /dev/null +++ b/Turbines_by_Compressors_And_Fans/6-Fluid_dynamics.ipynb @@ -0,0 +1,136 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 6: Fluid dynamics" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.1: inward_flow_radial_turbine_32000rpm.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// scilab Code Exa 6.1 inward flow radial turbine 32000rpm\n", +"P=150; // Power Output in kW\n", +"N=32e3; // Speed in RPM\n", +"d1=20/100; // outer diameter of the impeller in m\n", +"d2=8/100; // inner diameter of the impeller in m\n", +"V1=387; // Absolute Velocity of gas at entry in m/s\n", +"V2=193; // Absolute Velocity of gas at exit in m/s\n", +"\n", +"// part(a) determining mass flow rate\n", +"u1=%pi*d1*N/60;\n", +"u2=d2*u1/d1;\n", +"w_at=u1^2/10e2;\n", +"m=P/w_at;\n", +"disp ('kg/s' ,m,'(a)mass flow rate is')\n", +"\n", +"// part (b) determining the percentage energy transfer due to the change of radius\n", +"n=((u1^2-u2^2)/2e3)/w_at; \n", +"disp ('%',n*100,'(b)percentage energy transfer due to the change of radius is')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.2: radially_tipped_Centrifugal_blower_3000rpm.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// scilab Code Exa 6.2 radially tipped Centrifugal blower 3000rpm\n", +"P=150; // Power Output in kW\n", +"N=3e3; // Speed in RPM\n", +"d2=40/100; // outer diameter of the impeller in m\n", +"d1=25/100; // inner diameter of the impeller in m\n", +"b=8/100; // impeller width at entry in m\n", +"n_st=0.7; // stage efficiency\n", +"V1=22.67; // Absolute Velocity at entry in m/s\n", +"ro=1.25; // density of air in kg/m3\n", +"\n", +"// part(a) determining the pressure developed\n", +"u2=%pi*d2*N/60;\n", +"u1=d1*u2/d2;\n", +"w_ac=u2^2;\n", +"delh_s=n_st*w_ac;\n", +"delp=ro*delh_s;\n", +"disp ('mm W.G.' ,delp/9.81,'(a)the pressure developed is')\n", +"\n", +"// part (b) determining the power required\n", +"A1=%pi*d1*b;\n", +"m=ro*V1*A1;\n", +"P=m*w_ac/10e2;\n", +"disp('kW',P,'(b)Power required is')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.3: Calculation_on_an_axial_flow_fan.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// scilab Code Exa 6.3 Calculation on an axial flow fan\n", +"N=1.47e3; // Speed in RPM\n", +"d=30/100; // Mean diameter of the impeller in m\n", +"ro=1.25; // density of air in kg/m3\n", +"\n", +"// part(b) determining the pressure rise across the fan\n", +"u=%pi*d*N/60;\n", +"w_c=u^2/3;\n", +"delp=ro*w_c;\n", +"disp ('mm W.G.' ,delp/9.81,'(b)the pressure rise across the fan is')" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |