1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chapter 3: Gas Turbine Plants"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 3.1: Constant_Pressure_Gas_Turbine_Plant.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// scilab Code Exa 3.1 Constant Pressure Gas Turbine Plant\n",
"\n",
"t1=50; // Minimum Temperature in degree C\n",
"T1=t1+273; // in Kelvin\n",
"t3=950; // Maximum Temperature in degree C\n",
"T3=t3+273; // in Kelvin\n",
"n_c=0.82; // Compressor Efficiency\n",
"n_t=0.87; // Turbine Efficiency\n",
"gamma=1.4; // Specific Heat Ratio\n",
"cp=1.005; // Specific Heat at Constant Pressure in kJ/(kgK)\n",
"beeta=T3/T1;\n",
"alpha=beeta*n_c*n_t;\n",
"T_opt=sqrt(alpha); // For maximum power output, the temperature ratios in the turbine and compressor\n",
"\n",
"// part(a) Determining pressure ratio of the turbine and compressor\n",
"pr=T_opt^(gamma/(gamma-1));\n",
"disp(pr,'(a)Pressure Ratio is')\n",
"\n",
"// part(b) Determining maximum power output per unit flow rate\n",
"wp_max=cp*T1*((T_opt-1)^2)/n_c;\n",
"disp('kW/(kg/s)',wp_max,'(b)maximum power output per unit flow rate is')\n",
"\n",
"// part(c) Determining thermal efficiency of the plant for maximum power output\n",
"n_th=(T_opt-1)^2/((beeta-1)*n_c-(T_opt-1));\n",
"disp('%',n_th*100,'(c)thermal efficiency of the plant for maximum power output is')"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 3.2: Gas_Turbine_Plant_with_an_exhaust_HE.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// scilab Code Exa 3.2 Gas Turbine Plant with an exhaust HE\n",
"T1=300; // Minimum cycle Temperature in Kelvin\n",
"funcprot(0);\n",
"pr=10; // pressure ratio of the turbine and compressor\n",
"T3=1500; // Maximum cycle Temperature in Kelvin\n",
"m=10; // mass flow rate through the turbine and compressor in kg/s\n",
"e(1)=0.8; // thermal ratio of the heat exchanger\n",
"e(2)=1;\n",
"n_c=0.82; // Compressor Efficiency\n",
"n_t=0.85; // Turbine Efficiency\n",
"gamma=1.4; // Specific Heat Ratio\n",
"cp=1.005; // Specific Heat at Constant Pressure in kJ/(kgK)\n",
"beeta=T3/T1;\n",
"T2s=T1*(pr^((gamma-1)/gamma));\n",
"T2=T1+((T2s-T1)/n_c);\n",
"T4s=T3*(pr^(-((gamma-1)/gamma)));\n",
"T4=T3-((T3-T4s)*n_t);\n",
"\n",
"for i=1:2\n",
"T5=T2+e(i)*(T4-T2);\n",
"T6=T4-(T5-T2);\n",
"Q_s=cp*(T3-T5);\n",
"Q_r=cp*(T6-T1);\n",
"// part(a) Determining power developed\n",
"w_p=Q_s-Q_r;\n",
"P=m*w_p;\n",
"printf('for effectiveness=%f, \n (a)the power developed is %f kW',e(i),P)\n",
"\n",
"// part(b) Determining thermal efficiency of the plant\n",
"n_th=1-(Q_r/Q_s);\n",
"disp ('%',n_th*100,'(b)thermal efficiency of the plant is') \n",
"end\n",
"\n",
"// part(c) Determining efficiencies of the ideal Joules cycle\n",
"n_Joule=1-(pr^((gamma-1)/gamma)/beeta);\n",
"disp('%',n_Joule*100,'(c)efficiency of the ideal Joules cycle with perfect heat exchange is')\n",
"n_Carnot=1-(T1/T3);\n",
"disp('%',n_Carnot*100,'and the Carnot cycle efficiency is')"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 3.3: ideal_reheat_cycle_Gas_Turbine_Plant.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// scilab Code Exa 3.3 ideal reheat cycle gas turbine\n",
"T1=300; // Minimum cycle Temperature in Kelvin\n",
"r=25; // pressure ratio of the turbine and compressor\n",
"gamma=1.4;\n",
"T3=1500; // Maximum cycle Temperature in Kelvin\n",
"cp=1.005; // Specific Heat at Constant Pressure in kJ/(kgK)\n",
"beeta=T3/T1;\n",
"n=(gamma-1)/gamma;\n",
"t=(r^n);\n",
"d=1/sqrt(t);\n",
"// part(a) Determining mass flow rate through the turbine and compressor\n",
"c=2*beeta*[1-d];\n",
"wp_max=cp*T1*(c+1-t);\n",
"m=1000/wp_max;\n",
"disp ('kg/s',m,'(a)mass flow rate through the turbine and compressor is')\n",
"\n",
"// part(b) Determining thermal efficiency of the plant\n",
"n_th=(c+1-t)/(2*beeta-t-(beeta/sqrt(t)));\n",
"disp ('%',n_th*100,'(b)thermal efficiency of the plant is') "
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 3.4: Calculations_on_Gas_Turbine_Plant.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// scilab Code Exa 3.4 Calculations on Gas Turbine Plant for an ideal reheat cycle with optimum reheat pressure and perfect exhaust heat exchange\n",
"T1=300; // Minimum cycle Temperature in Kelvin\n",
"r=25; // pressure ratio of the turbine and compressor\n",
"T3=1500; // Maximum cycle Temperature in Kelvin\n",
"gamma=1.4; // Specific Heat Ratio\n",
"cp=1.005; // Specific Heat at Constant Pressure in kJ/(kgK)\n",
"beeta=T3/T1;\n",
"n=(gamma-1)/gamma;\n",
"t=(r^n);\n",
"d=1/sqrt(t);\n",
"// part(a) Determining mass flow rate through the turbine and compressor\n",
"c=2*beeta*[1-d];\n",
"wp_max=cp*T1*(c+1-t);\n",
"m=1000/wp_max;\n",
"disp ('kg/s' ,m,' mass flow rate through the turbine and compressor is')\n",
"\n",
"\n",
"// part(b) Determining thermal efficiency of the plant\n",
"c=sqrt(t)*(sqrt(t)+1)/(2*beeta);\n",
"n_th=1-c;\n",
"disp ('%',n_th*100,' thermal efficiency of the plant is') "
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 3.5: Calculations_on_Gas_Turbine_Plant.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// scilab Code Exa 3.5 Calculations on Gas Turbine Plant \n",
"\n",
"P=10e4; // Power Output in kW\n",
"T1=310; // Minimum cycle Temperature in Kelvin\n",
"p1=1.013; // Compressor Inlet Pressure in bar\n",
"pr_c=8; // Compressor pressure ratio\n",
"gamma=1.4;\n",
"gamma_g=1.33;\n",
"R=0.287; \n",
"p2=pr_c*p1; // Compressor Exit Pressure in bar\n",
"T3=1350; // Maximum cycle Temperature(Turbine inlet temp) in Kelvin\n",
"n_c=0.85; // Compressor Efficiency\n",
"p3=0.98*p2; // turbine inlet pressure\n",
"p4=1.02; // turbine exit pressure in bar\n",
"CV=40*10e2; // Calorific Value of fuel in kJ/kg;\n",
"n_B=0.98; // Combustion Efficiency\n",
"n_m=0.97; // Mechanical efficiency\n",
"n_t=0.9; // Turbine Efficiency\n",
"n_G=0.98; // Generator Efficiency\n",
"cp_a=1.005; // Specific Heat of air at Constant Pressure in kJ/(kgK)\n",
"\n",
"// Air Compressor\n",
"T2s=T1*(pr_c^((gamma-1)/gamma));\n",
"T2=T1+((T2s-T1)/n_c);\n",
"w_c=cp_a*(T2-T1);\n",
"\n",
"// Gas Turbine\n",
"n_g=(gamma_g-1)/gamma_g;\n",
"cp_g=1.157; // Specific Heat of gas at Constant Pressure in kJ/(kgK)\n",
"pr_t=p3/p4;\n",
"T4s=T3/(pr_t^((gamma_g-1)/gamma_g));\n",
"T4=T3-(n_t*(T3-T4s));\n",
"w_t=cp_g*(T3-T4);\n",
"w_net=w_t-w_c;\n",
"w_g=n_m*n_G*w_net;\n",
"\n",
"// part(a) Determining Gas Flow Rate\n",
"m_g=P/w_g;\n",
"disp ('kg/s',m_g,'(a)Gas flow rate is')\n",
"\n",
"// part(b) Determining Fuel-Air Ratio\n",
"F_A=((cp_g*T3)-(cp_a*T2))/((CV*n_B)-(cp_g*T3));\n",
"disp(F_A,'(b)Fuel-Air Ratio is')\n",
"\n",
"// part(c) Air flow rate\n",
"m_a=m_g/(1+F_A);\n",
"disp('kg/s',m_a,'(c)Air flow rate is')\n",
"\n",
"// part(d) Determining thermal efficiency of the plant\n",
"m_f=m_g-m_a;\n",
"n_th=m_g*w_net/(m_f*CV);\n",
"disp ('%',n_th*100,'(d)thermal efficiency of the plant is')\n",
"\n",
"// part(e) Determining Overall efficiency of the plant\n",
"n_o=n_m*n_G*n_th;\n",
"disp ('%',n_o*100,'(e)overall efficiency of the plant is')\n",
"\n",
"// part(f) Determining ideal Joule cycle efficiency\n",
"n_Joule=1-(1/(pr_c^((gamma-1)/gamma)));\n",
"disp ('%',n_Joule*100,'(f)efficiency of the ideal Joule cycle is')\n",
""
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Scilab",
"language": "scilab",
"name": "scilab"
},
"language_info": {
"file_extension": ".sce",
"help_links": [
{
"text": "MetaKernel Magics",
"url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
}
],
"mimetype": "text/x-octave",
"name": "scilab",
"version": "0.7.1"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|