summaryrefslogtreecommitdiff
path: root/Turbines_by_Compressors_And_Fans/3-Gas_Turbine_Plants.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Turbines_by_Compressors_And_Fans/3-Gas_Turbine_Plants.ipynb')
-rw-r--r--Turbines_by_Compressors_And_Fans/3-Gas_Turbine_Plants.ipynb285
1 files changed, 285 insertions, 0 deletions
diff --git a/Turbines_by_Compressors_And_Fans/3-Gas_Turbine_Plants.ipynb b/Turbines_by_Compressors_And_Fans/3-Gas_Turbine_Plants.ipynb
new file mode 100644
index 0000000..e2b3f4b
--- /dev/null
+++ b/Turbines_by_Compressors_And_Fans/3-Gas_Turbine_Plants.ipynb
@@ -0,0 +1,285 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 3: Gas Turbine Plants"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.1: Constant_Pressure_Gas_Turbine_Plant.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// scilab Code Exa 3.1 Constant Pressure Gas Turbine Plant\n",
+"\n",
+"t1=50; // Minimum Temperature in degree C\n",
+"T1=t1+273; // in Kelvin\n",
+"t3=950; // Maximum Temperature in degree C\n",
+"T3=t3+273; // in Kelvin\n",
+"n_c=0.82; // Compressor Efficiency\n",
+"n_t=0.87; // Turbine Efficiency\n",
+"gamma=1.4; // Specific Heat Ratio\n",
+"cp=1.005; // Specific Heat at Constant Pressure in kJ/(kgK)\n",
+"beeta=T3/T1;\n",
+"alpha=beeta*n_c*n_t;\n",
+"T_opt=sqrt(alpha); // For maximum power output, the temperature ratios in the turbine and compressor\n",
+"\n",
+"// part(a) Determining pressure ratio of the turbine and compressor\n",
+"pr=T_opt^(gamma/(gamma-1));\n",
+"disp(pr,'(a)Pressure Ratio is')\n",
+"\n",
+"// part(b) Determining maximum power output per unit flow rate\n",
+"wp_max=cp*T1*((T_opt-1)^2)/n_c;\n",
+"disp('kW/(kg/s)',wp_max,'(b)maximum power output per unit flow rate is')\n",
+"\n",
+"// part(c) Determining thermal efficiency of the plant for maximum power output\n",
+"n_th=(T_opt-1)^2/((beeta-1)*n_c-(T_opt-1));\n",
+"disp('%',n_th*100,'(c)thermal efficiency of the plant for maximum power output is')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.2: Gas_Turbine_Plant_with_an_exhaust_HE.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// scilab Code Exa 3.2 Gas Turbine Plant with an exhaust HE\n",
+"T1=300; // Minimum cycle Temperature in Kelvin\n",
+"funcprot(0);\n",
+"pr=10; // pressure ratio of the turbine and compressor\n",
+"T3=1500; // Maximum cycle Temperature in Kelvin\n",
+"m=10; // mass flow rate through the turbine and compressor in kg/s\n",
+"e(1)=0.8; // thermal ratio of the heat exchanger\n",
+"e(2)=1;\n",
+"n_c=0.82; // Compressor Efficiency\n",
+"n_t=0.85; // Turbine Efficiency\n",
+"gamma=1.4; // Specific Heat Ratio\n",
+"cp=1.005; // Specific Heat at Constant Pressure in kJ/(kgK)\n",
+"beeta=T3/T1;\n",
+"T2s=T1*(pr^((gamma-1)/gamma));\n",
+"T2=T1+((T2s-T1)/n_c);\n",
+"T4s=T3*(pr^(-((gamma-1)/gamma)));\n",
+"T4=T3-((T3-T4s)*n_t);\n",
+"\n",
+"for i=1:2\n",
+"T5=T2+e(i)*(T4-T2);\n",
+"T6=T4-(T5-T2);\n",
+"Q_s=cp*(T3-T5);\n",
+"Q_r=cp*(T6-T1);\n",
+"// part(a) Determining power developed\n",
+"w_p=Q_s-Q_r;\n",
+"P=m*w_p;\n",
+"printf('for effectiveness=%f, \n (a)the power developed is %f kW',e(i),P)\n",
+"\n",
+"// part(b) Determining thermal efficiency of the plant\n",
+"n_th=1-(Q_r/Q_s);\n",
+"disp ('%',n_th*100,'(b)thermal efficiency of the plant is') \n",
+"end\n",
+"\n",
+"// part(c) Determining efficiencies of the ideal Joules cycle\n",
+"n_Joule=1-(pr^((gamma-1)/gamma)/beeta);\n",
+"disp('%',n_Joule*100,'(c)efficiency of the ideal Joules cycle with perfect heat exchange is')\n",
+"n_Carnot=1-(T1/T3);\n",
+"disp('%',n_Carnot*100,'and the Carnot cycle efficiency is')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.3: ideal_reheat_cycle_Gas_Turbine_Plant.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// scilab Code Exa 3.3 ideal reheat cycle gas turbine\n",
+"T1=300; // Minimum cycle Temperature in Kelvin\n",
+"r=25; // pressure ratio of the turbine and compressor\n",
+"gamma=1.4;\n",
+"T3=1500; // Maximum cycle Temperature in Kelvin\n",
+"cp=1.005; // Specific Heat at Constant Pressure in kJ/(kgK)\n",
+"beeta=T3/T1;\n",
+"n=(gamma-1)/gamma;\n",
+"t=(r^n);\n",
+"d=1/sqrt(t);\n",
+"// part(a) Determining mass flow rate through the turbine and compressor\n",
+"c=2*beeta*[1-d];\n",
+"wp_max=cp*T1*(c+1-t);\n",
+"m=1000/wp_max;\n",
+"disp ('kg/s',m,'(a)mass flow rate through the turbine and compressor is')\n",
+"\n",
+"// part(b) Determining thermal efficiency of the plant\n",
+"n_th=(c+1-t)/(2*beeta-t-(beeta/sqrt(t)));\n",
+"disp ('%',n_th*100,'(b)thermal efficiency of the plant is') "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.4: Calculations_on_Gas_Turbine_Plant.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// scilab Code Exa 3.4 Calculations on Gas Turbine Plant for an ideal reheat cycle with optimum reheat pressure and perfect exhaust heat exchange\n",
+"T1=300; // Minimum cycle Temperature in Kelvin\n",
+"r=25; // pressure ratio of the turbine and compressor\n",
+"T3=1500; // Maximum cycle Temperature in Kelvin\n",
+"gamma=1.4; // Specific Heat Ratio\n",
+"cp=1.005; // Specific Heat at Constant Pressure in kJ/(kgK)\n",
+"beeta=T3/T1;\n",
+"n=(gamma-1)/gamma;\n",
+"t=(r^n);\n",
+"d=1/sqrt(t);\n",
+"// part(a) Determining mass flow rate through the turbine and compressor\n",
+"c=2*beeta*[1-d];\n",
+"wp_max=cp*T1*(c+1-t);\n",
+"m=1000/wp_max;\n",
+"disp ('kg/s' ,m,' mass flow rate through the turbine and compressor is')\n",
+"\n",
+"\n",
+"// part(b) Determining thermal efficiency of the plant\n",
+"c=sqrt(t)*(sqrt(t)+1)/(2*beeta);\n",
+"n_th=1-c;\n",
+"disp ('%',n_th*100,' thermal efficiency of the plant is') "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.5: Calculations_on_Gas_Turbine_Plant.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// scilab Code Exa 3.5 Calculations on Gas Turbine Plant \n",
+"\n",
+"P=10e4; // Power Output in kW\n",
+"T1=310; // Minimum cycle Temperature in Kelvin\n",
+"p1=1.013; // Compressor Inlet Pressure in bar\n",
+"pr_c=8; // Compressor pressure ratio\n",
+"gamma=1.4;\n",
+"gamma_g=1.33;\n",
+"R=0.287; \n",
+"p2=pr_c*p1; // Compressor Exit Pressure in bar\n",
+"T3=1350; // Maximum cycle Temperature(Turbine inlet temp) in Kelvin\n",
+"n_c=0.85; // Compressor Efficiency\n",
+"p3=0.98*p2; // turbine inlet pressure\n",
+"p4=1.02; // turbine exit pressure in bar\n",
+"CV=40*10e2; // Calorific Value of fuel in kJ/kg;\n",
+"n_B=0.98; // Combustion Efficiency\n",
+"n_m=0.97; // Mechanical efficiency\n",
+"n_t=0.9; // Turbine Efficiency\n",
+"n_G=0.98; // Generator Efficiency\n",
+"cp_a=1.005; // Specific Heat of air at Constant Pressure in kJ/(kgK)\n",
+"\n",
+"// Air Compressor\n",
+"T2s=T1*(pr_c^((gamma-1)/gamma));\n",
+"T2=T1+((T2s-T1)/n_c);\n",
+"w_c=cp_a*(T2-T1);\n",
+"\n",
+"// Gas Turbine\n",
+"n_g=(gamma_g-1)/gamma_g;\n",
+"cp_g=1.157; // Specific Heat of gas at Constant Pressure in kJ/(kgK)\n",
+"pr_t=p3/p4;\n",
+"T4s=T3/(pr_t^((gamma_g-1)/gamma_g));\n",
+"T4=T3-(n_t*(T3-T4s));\n",
+"w_t=cp_g*(T3-T4);\n",
+"w_net=w_t-w_c;\n",
+"w_g=n_m*n_G*w_net;\n",
+"\n",
+"// part(a) Determining Gas Flow Rate\n",
+"m_g=P/w_g;\n",
+"disp ('kg/s',m_g,'(a)Gas flow rate is')\n",
+"\n",
+"// part(b) Determining Fuel-Air Ratio\n",
+"F_A=((cp_g*T3)-(cp_a*T2))/((CV*n_B)-(cp_g*T3));\n",
+"disp(F_A,'(b)Fuel-Air Ratio is')\n",
+"\n",
+"// part(c) Air flow rate\n",
+"m_a=m_g/(1+F_A);\n",
+"disp('kg/s',m_a,'(c)Air flow rate is')\n",
+"\n",
+"// part(d) Determining thermal efficiency of the plant\n",
+"m_f=m_g-m_a;\n",
+"n_th=m_g*w_net/(m_f*CV);\n",
+"disp ('%',n_th*100,'(d)thermal efficiency of the plant is')\n",
+"\n",
+"// part(e) Determining Overall efficiency of the plant\n",
+"n_o=n_m*n_G*n_th;\n",
+"disp ('%',n_o*100,'(e)overall efficiency of the plant is')\n",
+"\n",
+"// part(f) Determining ideal Joule cycle efficiency\n",
+"n_Joule=1-(1/(pr_c^((gamma-1)/gamma)));\n",
+"disp ('%',n_Joule*100,'(f)efficiency of the ideal Joule cycle is')\n",
+""
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}