1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chapter 9: Gases"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 9.1: Calculation_of_an_Ammonia_Compressor_Aftercooler.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"printf('\t example 9.1 \n');\n",
"printf('\t approximate values are mentioned in the book \n');\n",
"T1=245; // inlet hot fluid,F\n",
"T2=95; // outlet hot fluid,F\n",
"t1=85; // inlet cold fluid,F\n",
"t2=95; // outlet cold fluid,F\n",
"W=9872; // lb/hr\n",
"w=78500; // lb/hr\n",
"printf('\t 1.for heat balance \n');\n",
"printf('\t for ammonia gas \n');\n",
"c=0.53; // Btu/(lb)*(F)\n",
"Q=((W)*(c)*(T1-T2)); // Btu/hr\n",
"printf('\t total heat required for ammonia gas is : %.2e Btu/hr \n',Q);\n",
"printf('\t for water \n');\n",
"c=1; // Btu/(lb)*(F)\n",
"Q=((w)*(c)*(t2-t1)); // Btu/hr\n",
"printf('\t total heat required for water is : %.2f Btu/hr \n',Q);\n",
"delt1=T2-t1; //F\n",
"delt2=T1-t2; // F\n",
"printf('\t delt1 is : %.0f F \n',delt1);\n",
"printf('\t delt2 is : %.0f F \n',delt2);\n",
"LMTD=((delt2-delt1)/((2.3)*(log10(delt2/delt1))));\n",
"printf('\t LMTD is :%.1f F \n',LMTD);\n",
"R=((T1-T2)/(t2-t1));\n",
"printf('\t R is : %.0f \n',R);\n",
"S=((t2-t1)/(T1-t1));\n",
"printf('\t S is : %.4f \n',S);\n",
"printf('\t FT is 0.837 \n'); // from fig 18\n",
"delt=(0.837*LMTD); // F\n",
"printf('\t delt is : %.1f F \n',delt);\n",
"Tc=((T2)+(T1))/2; // caloric temperature of hot fluid,F\n",
"printf('\t caloric temperature of hot fluid is : %.0f F \n',Tc);\n",
"tc=((t1)+(t2))/2; // caloric temperature of cold fluid,F\n",
"printf('\t caloric temperature of cold fluid is : %.0f F \n',tc);\n",
"printf('\t hot fluid:shell side,ammonia at 83psia \n');\n",
"ID=23.25; // in\n",
"C=0.1875; // clearance\n",
"B=12; // baffle spacing,in\n",
"PT=0.937;\n",
"as=((ID*C*B)/(144*PT)); // flow area,ft^2,from eq 7.1\n",
"printf('\t flow area is : %.3f ft^2 \n',as);\n",
"Gs=(W/as); // mass velocity,lb/(hr)*(ft^2),from eq 7.2\n",
"printf('\t mass velocity is : %.2e lb/(hr)*(ft^2) \n',Gs);\n",
"mu1=0.012*2.42; // at 170F,lb/(ft)*(hr), from fig.15\n",
"De=0.55/12; // from fig.28,ft\n",
"Res=((De)*(Gs)/mu1); // reynolds number\n",
"printf('\t reynolds number is : %.2e \n',Res);\n",
"jH=118; // from fig.28\n",
"k=0.017; // Btu/(hr)*(ft^2)*(F/ft),from table 5\n",
"Z=0.97; // Z=(Pr*(1/3)) prandelt number\n",
"ho=((jH)*(k/De)*(Z)*1); // using eq.6.15,Btu/(hr)*(ft^2)*(F)\n",
"printf('\t individual heat transfer coefficient is : %.1f Btu/(hr)*(ft^2)*(F) \n',ho);\n",
"printf('\t cold fluid:inner tube side,water \n');\n",
"Nt=364;\n",
"n=8; // number of passes\n",
"L=8; //ft\n",
"at1=0.302; // flow area, in^2,from table 10\n",
"at=((Nt*at1)/(144*n)); // total area,ft^2,from eq.7.48\n",
"printf('\t flow area is : %.4f ft^2 \n',at);\n",
"Gt=(w/(at)); // mass velocity,lb/(hr)*(ft^2)\n",
"printf('\t mass velocity is : %.2e lb/(hr)*(ft^2) \n',Gt);\n",
"V=(Gt/(3600*62.5)); // fps\n",
"printf('\t V is : %.2f fps \n',V);\n",
"mu2=0.82*2.42; // at 90F,lb/(ft)*(hr),from fig 14\n",
"D=(0.62/12); // ft,from table 10\n",
"Ret=((D)*(Gt)/mu2); // reynolds number\n",
"printf('\t reynolds number is : %.2e \n',Ret);\n",
"hi=900; // using fig 25,Btu/(hr)*(ft^2)*(F)\n",
"printf('\t hi is : %.0f Btu/(hr)*(ft^2)*(F) \n',hi);\n",
"ID=0.62; // ft\n",
"OD=0.75; //ft\n",
"hio=((hi)*(ID/OD)); // using eq.6.5\n",
"printf('\t Correct hi0 to the surface at the OD is : %.0f Btu/(hr)*(ft^2)*(F) \n',hio);\n",
"Uc=((hio)*(ho)/(hio+ho)); // clean overall coefficient,Btu/(hr)*(ft^2)*(F)\n",
"printf('\t clean overall coefficient is : %.1f Btu/(hr)*(ft^2)*(F) \n',Uc);\n",
"A2=0.1963; // actual surface supplied for each tube,ft^2,from table 10\n",
"A=(Nt*L*A2); // ft^2\n",
"printf('\t total surface area is : %.0f ft^2 \n',A);\n",
"UD=((Q)/((A)*(delt)));\n",
"printf('\t actual design overall coefficient is : %.1f Btu/(hr)*(ft^2)*(F) \n',UD);\n",
"Rd=((Uc-UD)/((UD)*(Uc))); // (hr)*(ft^2)*(F)/Btu\n",
"printf('\t actual Rd is : %.3f (hr)*(ft^2)*(F)/Btu \n',Rd);\n",
"printf('\t pressure drop for annulus \n');\n",
"f=0.00162; // friction factor for reynolds number 40200, using fig.29\n",
"Ds=23.25/12; // ft\n",
"phys=1;\n",
"N=(12*L/B); // number of crosses,using eq.7.43\n",
"printf('\t number of crosses are : %.0f \n',N);\n",
"rowgas=0.209;\n",
"printf('\t rowgas is %.3f lb/ft^3 \n',rowgas);\n",
"s=rowgas/62.5;\n",
"printf('\t s is %.5f \n',s);\n",
"delPs=((f*(Gs^2)*(Ds)*(N))/(5.22*(10^10)*(De)*(s)*(phys))); // using eq.7.44,psi\n",
"printf('\t delPs is : %.0f psi \n',delPs);\n",
"printf('\t allowable delPs is 2 psi \n');\n",
"printf('\t pressure drop for inner pipe \n');\n",
"f=0.000225; // friction factor for reynolds number 21400, using fig.26\n",
"s=1;\n",
"D=0.0517; //ft\n",
"phyt=1;\n",
"delPt=((f*(Gt^2)*(L)*(n))/(5.22*(10^10)*(D)*(s)*(phyt))); // using eq.7.45,psi\n",
"printf('\t delPt is : %.1f psi \n',delPt);\n",
"X1=0.090; // X1=((V^2)/(2*g)), for Gt 1060000,using fig.27\n",
"delPr=((4*n*X1)/(s)); // using eq.7.46,psi\n",
"printf('\t delPr is : %.1f psi \n',delPr);\n",
"delPT=delPt+delPr; // using eq.7.47,psi\n",
"printf('\t delPT is : %.1f psi \n',delPT);\n",
"printf('\t allowable delPT is 10 psi \n');\n",
"//end"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 9.2: Calculation_of_the_Heat_Load_for_an_Air_Intercooler.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"printf('\t example 9.2 \n');\n",
"printf('\t approximate values are mentioned in the book \n');\n",
"V1=4670; // inlet air volume,cfm\n",
"Pp=0.8153; // Saturation partial pressure of water at 95F,psi,from table 7\n",
"Ps=404.3;// Saturation specific volume of water at 95F,ft^3/lb, from table 7\n",
"printf('\t The air and water both occupy the same volume at their respective partial pressures \n');\n",
"Vw1=(V1*60/Ps); // water entering per hr,lb\n",
"printf('\t volume of water entering is : %.0f lb \n',Vw1);\n",
"printf('\t for first stage \n');\n",
"c=2.33; // compression ratio\n",
"P1=14.7; // psi\n",
"P2=(P1*c); // (c=(P2/P1)),psi\n",
"printf('\t P2 is : %.1f psi \n',P2);\n",
"gama=1.4; // for air\n",
"T1abs=95; // F\n",
"T2absr=((T1abs+460)*(P2/P1)^((gama-1)/gama));\n",
"printf('\t T2absr is : %.0f R \n',T2absr);\n",
"T2abs=(T2absr-459.67); // F\n",
"printf('\t T2abs is : %.0f F \n',T2abs);\n",
"printf('\t for intercooler \n');\n",
"V2=(V1*60*P1/P2); // ft^3/hr\n",
"printf('\t final gas volume is : %.1e ft^3/hr \n',V2);\n",
"Vw2=(V2/Ps); // water remaining in air, lb/hr\n",
"printf('\t water remaining in air is : %.0f lb/hr \n',Vw2);\n",
"C=(Vw1-Vw2); // condensation in inter cooler, lb/hr\n",
"printf('\t condensation in inter cooler is : %.0f lb/hr \n',C);\n",
"Vs=14.8; // Specific volume of atmospheric air,ft^3/lb\n",
"printf('\t Specific volume of atmospheric air is : %.1f ft^3/lb \n',Vs);\n",
"Va=(V1*60/Vs); // air in inlet gas, lb/hr\n",
"printf('\t air in inlet gas is : %.2e lb/hr\n',Va);\n",
"printf('\t heat load(245 to 95F) \n)');\n",
"printf('\t sensible heat \n');\n",
"Qair=((Va)*(0.25)*(245-T1abs)); // Btu/hr\n",
"printf('\t Qair is : %.2e Btu/hr \n',Qair);\n",
"Qwaters=(Vw1*0.45*(245-T1abs)); // Btu/hr\n",
"printf('\t Qwaters is : %.2e Btu/hr \n',Qwaters);\n",
"printf('\t latent heat \n');\n",
"l=1040.1; // latent heat\n",
"Qwaterl=(C*l); // Btu/hr\n",
"printf('\t Qwater1 is : %.2e Btu/hr \n',Qwaterl);\n",
"Qt1=Qair+Qwaters+Qwaterl;\n",
"printf('\t total heat is : %.3e Btu/hr \n',Qt1);\n",
"printf('\t for second stage \n');\n",
"c=2.33; // compression ratio\n",
"P3=(P2*c); // (c=(P3/P1)),psi\n",
"printf('\t P3 is : %.1f psi \n',P3);\n",
"V3=(V1*60*P1/P3); // ft^3/hr\n",
"printf('\t final gas volume is : %.2e ft^3/hr \n',V3);\n",
"Vw3=(V3/Ps); // water remaining in air, lb/hr\n",
"printf('\t water remaining in air is : %.1f lb/hr \n',Vw3);\n",
"C1=(297-Vw3); // condensation in inter cooler, lb/hr\n",
"printf('\t condensation in inter cooler is : %.1f lb/hr \n',C1);\n",
"printf('\t heat load(245 to 95F) \n)');\n",
"printf('\t sensible heat \n');\n",
"Qair=(Va*0.25*(245-T1abs)); // Btu/hr\n",
"printf('\t Qair is : %.2e Btu/hr \n',Qair);\n",
"Qwaters=(Vw2*0.44*(245-T1abs)); // Btu/hr\n",
"printf('\t Qwater is : %.2e Btu/hr \n',Qwaters);\n",
"printf('\t latent heat \n');\n",
"l=1040.1; // latent heat\n",
"Qwaterl=(C1*l); // Btu/hr, calculation mistake in book\n",
"printf('\t Qwater is : %.2e Btu/hr \n',Qwaterl);\n",
"Qt1=Qair+Qwaters+Qwaterl;\n",
"printf('\t total heat is : %.3e Btu/hr \n',Qt1);\n",
"// end"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 9.3: Calculation_of_the_Dew_Point_after_Compression.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"printf('\t example 9.3 \n');\n",
"printf('\t approximate values are mentioned in the book \n');\n",
"Va=18900; // air in inlet gas\n",
"Vw1=692; // water entering\n",
"Ma=(Va/29); // moles\n",
"Mw=(Vw1/18); // moles\n",
"M=(Ma+Mw); // moles\n",
"printf('\t total number of moles re : %.1f \n',M);\n",
"printf('\t Moles of air is : %.0f \n',Ma);\n",
"printf('\t Moles of water is : %.1f \n',Mw);\n",
"printf('\t after compression \n');\n",
"P=34.2; // pressure,psi\n",
"pw=(Mw/M)*(P); // partial pressure\n",
"printf('\t partial pressure is :%.1f psi \n',pw);\n",
"Td=124; // F, table table 7\n",
"printf('\t dew point is : %.0f F \n',Td);\n",
"// end"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Scilab",
"language": "scilab",
"name": "scilab"
},
"language_info": {
"file_extension": ".sce",
"help_links": [
{
"text": "MetaKernel Magics",
"url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
}
],
"mimetype": "text/x-octave",
"name": "scilab",
"version": "0.7.1"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|