1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chapter 5: Properties of Matter"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 5.1: Period_of_pendulum.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc\n",
"clear\n",
"//Input data\n",
"m=1//Mass of torsional pendulum in kg\n",
"R=0.06//Radius of torsional pendulum in m\n",
"l=1.2//Length of the wire in m\n",
"r=0.0008//Radius of wire in m\n",
"S=(9*10^9)//Modulus of rigidity of the material in N/m^2\n",
"\n",
"//Calculations\n",
"I=(1/2)*m*R^2//Moment of inertia in kg.m^2\n",
"C=(3.14*S*r^4)/(2*l)//Couple per unit twist in N.m\n",
"T=2*3.14*sqrt(I/C)//Period of pendulum in s\n",
"\n",
"//Output\n",
"printf('Period of pendulum is %3.1f s',T)"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 5.2: Work_done.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc\n",
"clear\n",
"//Input data\n",
"l=0.8//Length of the wire in m\n",
"d=(1.8*10^-3)//Diameter of the wire in m\n",
"a=1.5//Angle of twist in degrees\n",
"S=(1.8*10^11)//Modulus of rigidity of the material in N/m^2\n",
"\n",
"//Calculations\n",
"r=(a*3.14)/180//Angle of twist in radians\n",
"W=((3.14*S*(d/2)^4*r^2)/(4*l))/10^-5//Work required to twist the wire in J*10^-5\n",
"\n",
"//Output\n",
"printf('Work required to twist the wire is %3.2f*10^-5 J',W)"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 5.3: PProperties_of_Material.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc\n",
"clear\n",
"//Input data\n",
"l=2//Length of wire in m\n",
"d=(0.4*10^-3)//Diameter of the wire in m\n",
"x=(1.03*10^-3)//Extension in length in m\n",
"L=2//Load in kg\n",
"C=(4.52*10^-6)//Couple in N/m\n",
"a=0.03//Twist angle in radians\n",
"\n",
"//Calculations\n",
"Y=((L*9.8*l)/(x*3.14*(d/2)^2))/10^11//Young's modulus in N/m^2*10^11\n",
"S=((C*2*l)/(3.14*(d/2)^4*a))/10^11//Modulus of rigidity in N/m^2*10^11\n",
"s=(Y/(2*S))-1//Poisson's ratio\n",
"\n",
"//Output\n",
"printf('Youngs modulus is %3.2f*10^11 N/m^2\nModulus of rigidity is %3.2f*10^11 N/m^2\nPoissons ratio is %3.4f',Y,S,s)"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 5.4: Excess_pressure.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc\n",
"clear\n",
"//Input data\n",
"r=0.003//Radius of drop of glycerine in m\n",
"T=(63.1*10^-3)//Surface tension of glycerine in N/m\n",
"\n",
"//Calculations\n",
"P=((2*T)/r)//Excess pressure inside the drop of glycerine in N/m^2\n",
"\n",
"//Output\n",
"printf('Excess pressure inside the drop of glycerine is %3.2f N/m^2',P)"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 5.5: Rate_of_change_of_pressure.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc\n",
"clear\n",
"//Input data\n",
"r1=0.001//Initial radius in m\n",
"r2=0.004//Final radius in m\n",
"t=2*10^-3//Time in s\n",
"s=(7*10^-2)//Surface tension of water in N/m\n",
"\n",
"//Calculations\n",
"P=((2*s)*((1/r2)-(1/r1)))/(t*10^4)//Rate of change of pressure in N/m^2.s*10^4\n",
"\n",
"//Output\n",
"printf('Rate of change of pressure is %3.2f*10^4 N/m^2.s',P)"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 5.6: Work_done.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc\n",
"clear\n",
"//Input data\n",
"d=0.02//Diamter of soap bubble in m\n",
"s=(25*10^-3)//Surface tension in N/m\n",
"//Initial surface area of the bubble is zero and final area is 2*4*pie*r^2 where r is the radius of the bubble\n",
"\n",
"//Calculations\n",
"W=(s*2*4*3.14*(d/2)^2)/10^-5//Work done in blowing a soap bubble in J*10^-5\n",
"\n",
"//Output\n",
"printf('Work done in blowing a soap bubble is %3.2f*10^-5 J',W)"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 5.7: Energy_required.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc\n",
"clear\n",
"//Input data\n",
"r=0.01//Radius of liquid drop in m\n",
"n=500//Number of drops\n",
"s=(63*10^-3)//Surface tension in N/m\n",
"\n",
"//Calculations\n",
"r1=(((4*3.14*r^3)/3)/((n*4*3.14)/3))^(1/3)//Radius of one small drop in m\n",
"As=(n*4*3.14*r1^2)//Total surface of 500 drops in m^2\n",
"as=4*3.14*r^2//Original surface area of the drop in m^2\n",
"W=(s*(As-as))/10^-4//Work done in J*10^-4\n",
"\n",
"//Output\n",
"printf('Energy required to break up a drop of a liquid is %3.1f*10^-4 J',W)"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 5.8: Speed_of_flow.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc\n",
"clear\n",
"//Input data\n",
"d=0.04//Inside diameter of garden hose in m\n",
"D=0.01//Diamter of nozzle opening in m\n",
"v1=0.6//speed of flow of water in the hose in m/s\n",
"\n",
"//calculations\n",
"a=3.14*(d/2)^2//Area of hose in m^2\n",
"A=3.14*(D/2)^2//Area of nozzle in m^2\n",
"v2=(v1*a)/A//Speed of flow through the nozzle in m/s\n",
"\n",
"//Output\n",
"printf('Speed of flow through the nozzle is %3.1f m/s',v2)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Scilab",
"language": "scilab",
"name": "scilab"
},
"language_info": {
"file_extension": ".sce",
"help_links": [
{
"text": "MetaKernel Magics",
"url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
}
],
"mimetype": "text/x-octave",
"name": "scilab",
"version": "0.7.1"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|