{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 5: Properties of Matter" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5.1: Period_of_pendulum.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc\n", "clear\n", "//Input data\n", "m=1//Mass of torsional pendulum in kg\n", "R=0.06//Radius of torsional pendulum in m\n", "l=1.2//Length of the wire in m\n", "r=0.0008//Radius of wire in m\n", "S=(9*10^9)//Modulus of rigidity of the material in N/m^2\n", "\n", "//Calculations\n", "I=(1/2)*m*R^2//Moment of inertia in kg.m^2\n", "C=(3.14*S*r^4)/(2*l)//Couple per unit twist in N.m\n", "T=2*3.14*sqrt(I/C)//Period of pendulum in s\n", "\n", "//Output\n", "printf('Period of pendulum is %3.1f s',T)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5.2: Work_done.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc\n", "clear\n", "//Input data\n", "l=0.8//Length of the wire in m\n", "d=(1.8*10^-3)//Diameter of the wire in m\n", "a=1.5//Angle of twist in degrees\n", "S=(1.8*10^11)//Modulus of rigidity of the material in N/m^2\n", "\n", "//Calculations\n", "r=(a*3.14)/180//Angle of twist in radians\n", "W=((3.14*S*(d/2)^4*r^2)/(4*l))/10^-5//Work required to twist the wire in J*10^-5\n", "\n", "//Output\n", "printf('Work required to twist the wire is %3.2f*10^-5 J',W)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5.3: PProperties_of_Material.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc\n", "clear\n", "//Input data\n", "l=2//Length of wire in m\n", "d=(0.4*10^-3)//Diameter of the wire in m\n", "x=(1.03*10^-3)//Extension in length in m\n", "L=2//Load in kg\n", "C=(4.52*10^-6)//Couple in N/m\n", "a=0.03//Twist angle in radians\n", "\n", "//Calculations\n", "Y=((L*9.8*l)/(x*3.14*(d/2)^2))/10^11//Young's modulus in N/m^2*10^11\n", "S=((C*2*l)/(3.14*(d/2)^4*a))/10^11//Modulus of rigidity in N/m^2*10^11\n", "s=(Y/(2*S))-1//Poisson's ratio\n", "\n", "//Output\n", "printf('Youngs modulus is %3.2f*10^11 N/m^2\nModulus of rigidity is %3.2f*10^11 N/m^2\nPoissons ratio is %3.4f',Y,S,s)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5.4: Excess_pressure.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc\n", "clear\n", "//Input data\n", "r=0.003//Radius of drop of glycerine in m\n", "T=(63.1*10^-3)//Surface tension of glycerine in N/m\n", "\n", "//Calculations\n", "P=((2*T)/r)//Excess pressure inside the drop of glycerine in N/m^2\n", "\n", "//Output\n", "printf('Excess pressure inside the drop of glycerine is %3.2f N/m^2',P)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5.5: Rate_of_change_of_pressure.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc\n", "clear\n", "//Input data\n", "r1=0.001//Initial radius in m\n", "r2=0.004//Final radius in m\n", "t=2*10^-3//Time in s\n", "s=(7*10^-2)//Surface tension of water in N/m\n", "\n", "//Calculations\n", "P=((2*s)*((1/r2)-(1/r1)))/(t*10^4)//Rate of change of pressure in N/m^2.s*10^4\n", "\n", "//Output\n", "printf('Rate of change of pressure is %3.2f*10^4 N/m^2.s',P)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5.6: Work_done.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc\n", "clear\n", "//Input data\n", "d=0.02//Diamter of soap bubble in m\n", "s=(25*10^-3)//Surface tension in N/m\n", "//Initial surface area of the bubble is zero and final area is 2*4*pie*r^2 where r is the radius of the bubble\n", "\n", "//Calculations\n", "W=(s*2*4*3.14*(d/2)^2)/10^-5//Work done in blowing a soap bubble in J*10^-5\n", "\n", "//Output\n", "printf('Work done in blowing a soap bubble is %3.2f*10^-5 J',W)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5.7: Energy_required.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc\n", "clear\n", "//Input data\n", "r=0.01//Radius of liquid drop in m\n", "n=500//Number of drops\n", "s=(63*10^-3)//Surface tension in N/m\n", "\n", "//Calculations\n", "r1=(((4*3.14*r^3)/3)/((n*4*3.14)/3))^(1/3)//Radius of one small drop in m\n", "As=(n*4*3.14*r1^2)//Total surface of 500 drops in m^2\n", "as=4*3.14*r^2//Original surface area of the drop in m^2\n", "W=(s*(As-as))/10^-4//Work done in J*10^-4\n", "\n", "//Output\n", "printf('Energy required to break up a drop of a liquid is %3.1f*10^-4 J',W)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5.8: Speed_of_flow.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc\n", "clear\n", "//Input data\n", "d=0.04//Inside diameter of garden hose in m\n", "D=0.01//Diamter of nozzle opening in m\n", "v1=0.6//speed of flow of water in the hose in m/s\n", "\n", "//calculations\n", "a=3.14*(d/2)^2//Area of hose in m^2\n", "A=3.14*(D/2)^2//Area of nozzle in m^2\n", "v2=(v1*a)/A//Speed of flow through the nozzle in m/s\n", "\n", "//Output\n", "printf('Speed of flow through the nozzle is %3.1f m/s',v2)" ] } ], "metadata": { "kernelspec": { "display_name": "Scilab", "language": "scilab", "name": "scilab" }, "language_info": { "file_extension": ".sce", "help_links": [ { "text": "MetaKernel Magics", "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" } ], "mimetype": "text/x-octave", "name": "scilab", "version": "0.7.1" } }, "nbformat": 4, "nbformat_minor": 0 }