1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chapter 3: Stress and Deformation"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 3.1: Stress_and_Deflection_under_Compressive_Axial_Load.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc;\n",
"clear;\n",
"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-3.1 Page No-41 \n');\n",
"F=20000; //[lb] Load applied to steel bar\n",
"L=6; //[in] Length of steel bar\n",
"d=1; //[in] Diameter of steel bar\n",
"A=%pi*(d^2)/4; //[in^2] Area of cross section of steel bar\n",
"E=30*10^6; //[lb/in^2] Modulus of elasticity for AISI 1020 hot-rolled steel\n",
"Sy=30000; //[lb/in^2] Yield limit\n",
"S=F/A; //[lb/in^2] Stress in bar\n",
"mprintf('\na. Stress in bar=%f lb/in^2.',S);\n",
"delta=F*L/(A*E); //[in] Change in length of bar\n",
"mprintf('\nb. bar shorten by %f in.',delta);\n",
"if Sy>S then\n",
" mprintf('\nc. The stress of %f psi is less than Sy of %f psi, so it will\n return to its original size because the yield limit was not exceeded.',S,Sy);\n",
"else \n",
" mprintf('The bar will not return to its original length')\n",
"end\n",
"//Note: The deviation of answer from the answer given in the book is due to round off error.(In the book values are rounded while in scilab actual values are taken)"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 3.2: Stress_and_Deflection_due_to_Bending.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc;\n",
"clear;\n",
"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-3.2 Page No.43\n');\n",
"b=2; //[in] Width of beam\n",
"h=2; //[in] Height of beam\n",
"I=(b*h^3)/12; //[in^4] Moment of inertia\n",
"F=3000; //[lb] Load applied to beam\n",
"L=36; //[in] Length of beam\n",
"c=1; //[in] Distance of outer most fiber from neutral axis\n",
"E=30*10^6; //[lb/in^2] Modulus of elasticity\n",
"Sy=30000; //[lb/in^2] Yield strength\n",
"Su=55000; //[lb/in^2] Ultimate strength\n",
"SF=2; //[] Safety factor based on ultimate stress\n",
"M=F*L/4; //[lb*in] Bending moment\n",
"S=(M/I)*c; //[lb/in^2] Bending stress\n",
"//Note-In the book I=1.33 in^4 is used instead of I=1.3333333 in^2\n",
"mprintf('\na. The maximum stress in beam is %f lb/in^2',S);\n",
"delta=-F*L^3/(48*E*I); //[in] Maximum deflection in this beam\n",
"mprintf('\nb. The maximum deflection in this beam is %f in.',delta);\n",
"if Sy>S then\n",
" mprintf('\nc. Yes, the stress of %f lb/in^2 is less than the yield of Sy=%f lb/in^2.',S,Sy);\n",
"else\n",
" mprintf('\nc. No, the stress of %f lb/in^2 is greater than the yield of Sy=%f lb/in^2',S,Sy);\n",
"end\n",
"Sall=Su/SF; //[lb/in^2] Allowable stress\n",
"if Sall>S then\n",
" mprintf('\nd. It is acceptable because allowable stress is greater than the acttual stress of %f lb/in^2.',S);\n",
"else\n",
" mprintf('\nd. Design is not acceptable because allowable stress is less than the actual stress of %f lb/in^2.',S)\n",
"end\n",
"//Note: The deviation of answer from the answer given in the book is due to round off error.(In the book values are rounded while in scilab actual values are taken)"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 3.3: Shear_Stress.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc;\n",
"clear;\n",
"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-3.3 Page No.45\n');\n",
"Su=80*10^3; //[lb/in^2] Ultimate strength\n",
"d=0.5; //[in] Diameter of pin\n",
"As=%pi*d^2/4; //[in^2] Area of cross section of pin\n",
"F=20*10^3; //[lb] Load acting\n",
"Ss=F/(2*As); //[lb/in^2] Shear stress\n",
"if 0.5*Su>=Ss & 0.6*Su>=Ss then\n",
" mprintf('Pin would not fail');\n",
"else\n",
" mprintf('\n Actual stress is too high and the pin would fail.');\n",
"end"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 3.4: Torsional_Shear_Stress.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc;\n",
"clear;\n",
"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-3.4 Page No.46\n');\n",
"hp=10; //[hp] Power transmitted\n",
"rpm=1750; //[rpm] Turning speed\n",
"d=0.5; //[in] Diameter of shaft\n",
"L=12; //[in] Length of shaft\n",
"G=11.5*10^6 //[lb/in^2] shear modulus of elasticity\n",
"Su=62000; //[lb/in^2] \n",
"T=63000*hp/rpm; //[in*lb] Torque transmitted\n",
"Z=%pi*d^3/16; //[in^3] Polar section modulus\n",
"Ss=T/Z; //[lb/in^2] Torsional shear stress\n",
"//Note- In the book Z=0.025 in^3 is used instead of Z=0.0245437 in^3\n",
"mprintf('\na. Stress in the shaft is %f lb/in^2.',Ss)\n",
"J=%pi*d^4/32; //[in^4] Polar moment of inertia\n",
"theta=T*L/(J*G); //[radians] \n",
"//Note- In the book J=0.0061 in^4 is used instead of J=0.0061359 in^4\n",
"mprintf('\nb. The angular deflection of shaft would be %f radians',theta);\n",
"SF=3; //[] Safety factor based on ultimate strength\n",
"Zd=T/(0.5*Su/SF); //[in^3] Polar section modulus required for SF=3\n",
"Dd=(16*Zd/%pi)^(1/3); //[in] Diameter of shaft required Z=%pi*d^3/16\n",
"mprintf('\nc. Diameter of shaft required is %f in.',Dd);"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 3.5: Critical_Load_in_Pinned_End_Column.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc;\n",
"clear;\n",
"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-3.5 Page No.53\n');\n",
"L=30; //[in] Length of link\n",
"d=5/8; //[in] Diameter of link\n",
"I=%pi*d^4/64; //[in^4] Moment of inertia\n",
"A=%pi*d^2/4; //[in^2] Area of cross section\n",
"E=30*10^6; //[lb/in^2] Modulus of elasticity\n",
"r=sqrt(I/A); //[in] Radius of gyration\n",
"mprintf('\n The radius of gyration %f in.',r);\n",
"K=1; //[] End support condition factor\n",
"Le=K*L; //[in] Effective length\n",
"mprintf('\n Effective length is %f in',Le);\n",
"SR=Le/r; //[] Slenderness ratio\n",
"mprintf('\n Slenderness ratio is %f.',SR)\n",
"Sy=42000; //[lb/in^2] Yield strength\n",
"Cc=sqrt(2*%pi^2*E/Sy); //[] Column constant\n",
"mprintf('The column constant is %f.',Cc);\n",
"if SR>Cc then\n",
" mprintf('\n Slenderness ratio is greater than column constant, so use the euler formula')\n",
"end\n",
"I=%pi*d^4/64; //[in^4] Moment of inertia\n",
"mprintf('\n The moment of inertia is %f in^4',I);\n",
"Pc=%pi^2*E*I/Le^2; //[lb] Critical force\n",
"//Note- In the book I=0.0075 in^4 is used instead of I=0.0074901 in^4\n",
"mprintf('\n The critical force is %f lb.',Pc);"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 3.6: Critical_Load_in_Fixed_End_Column.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc;\n",
"clear;\n",
"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-3.6 Page No.55\n');\n",
"L=60; //[in] Length of column\n",
"Sy=36000; //[lb/in^2] Yield strength\n",
"SF=2; //[]Safty factor\n",
"E=30*10^6; //[lb/in^2] Modulus of elasticity\n",
"A=2.26; //[in^2] Area of cross section (Appendix 5.4)\n",
"I=0.764; //[in^4] Moment of inertia (Appendix 5.4)\n",
"r=sqrt(I/A); //[in] Radius of gyration\n",
"K=0.65; //[] End support condition factor from Figure 3.8\n",
"Le=K*L; //[in] Effective length\n",
"mprintf('\n The effective length is %f in.',Le);\n",
"SR=Le/r; //[] Slenderness ratio\n",
"mprintf('\n The slenderness ratio is %f.',SR);\n",
"Cc=sqrt(2*%pi^2*E/Sy); //[] Column constant\n",
"mprintf('\n The column constant is %f.',Cc);\n",
"if Cc>SR then\n",
" mprintf('\n The column constant is greater than slenderness ratio, so use the Johnson formula.');\n",
"end\n",
"F=(A*Sy/SF)*(1-Sy*SR^2/(4*%pi^2*E));\n",
"mprintf('\n The acceptable load for a safty factor of 2 is %f lb.',F);"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Scilab",
"language": "scilab",
"name": "scilab"
},
"language_info": {
"file_extension": ".sce",
"help_links": [
{
"text": "MetaKernel Magics",
"url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
}
],
"mimetype": "text/x-octave",
"name": "scilab",
"version": "0.7.1"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|