{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 3: Stress and Deformation" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.1: Stress_and_Deflection_under_Compressive_Axial_Load.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;\n", "clear;\n", "mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-3.1 Page No-41 \n');\n", "F=20000; //[lb] Load applied to steel bar\n", "L=6; //[in] Length of steel bar\n", "d=1; //[in] Diameter of steel bar\n", "A=%pi*(d^2)/4; //[in^2] Area of cross section of steel bar\n", "E=30*10^6; //[lb/in^2] Modulus of elasticity for AISI 1020 hot-rolled steel\n", "Sy=30000; //[lb/in^2] Yield limit\n", "S=F/A; //[lb/in^2] Stress in bar\n", "mprintf('\na. Stress in bar=%f lb/in^2.',S);\n", "delta=F*L/(A*E); //[in] Change in length of bar\n", "mprintf('\nb. bar shorten by %f in.',delta);\n", "if Sy>S then\n", " mprintf('\nc. The stress of %f psi is less than Sy of %f psi, so it will\n return to its original size because the yield limit was not exceeded.',S,Sy);\n", "else \n", " mprintf('The bar will not return to its original length')\n", "end\n", "//Note: The deviation of answer from the answer given in the book is due to round off error.(In the book values are rounded while in scilab actual values are taken)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.2: Stress_and_Deflection_due_to_Bending.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;\n", "clear;\n", "mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-3.2 Page No.43\n');\n", "b=2; //[in] Width of beam\n", "h=2; //[in] Height of beam\n", "I=(b*h^3)/12; //[in^4] Moment of inertia\n", "F=3000; //[lb] Load applied to beam\n", "L=36; //[in] Length of beam\n", "c=1; //[in] Distance of outer most fiber from neutral axis\n", "E=30*10^6; //[lb/in^2] Modulus of elasticity\n", "Sy=30000; //[lb/in^2] Yield strength\n", "Su=55000; //[lb/in^2] Ultimate strength\n", "SF=2; //[] Safety factor based on ultimate stress\n", "M=F*L/4; //[lb*in] Bending moment\n", "S=(M/I)*c; //[lb/in^2] Bending stress\n", "//Note-In the book I=1.33 in^4 is used instead of I=1.3333333 in^2\n", "mprintf('\na. The maximum stress in beam is %f lb/in^2',S);\n", "delta=-F*L^3/(48*E*I); //[in] Maximum deflection in this beam\n", "mprintf('\nb. The maximum deflection in this beam is %f in.',delta);\n", "if Sy>S then\n", " mprintf('\nc. Yes, the stress of %f lb/in^2 is less than the yield of Sy=%f lb/in^2.',S,Sy);\n", "else\n", " mprintf('\nc. No, the stress of %f lb/in^2 is greater than the yield of Sy=%f lb/in^2',S,Sy);\n", "end\n", "Sall=Su/SF; //[lb/in^2] Allowable stress\n", "if Sall>S then\n", " mprintf('\nd. It is acceptable because allowable stress is greater than the acttual stress of %f lb/in^2.',S);\n", "else\n", " mprintf('\nd. Design is not acceptable because allowable stress is less than the actual stress of %f lb/in^2.',S)\n", "end\n", "//Note: The deviation of answer from the answer given in the book is due to round off error.(In the book values are rounded while in scilab actual values are taken)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.3: Shear_Stress.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;\n", "clear;\n", "mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-3.3 Page No.45\n');\n", "Su=80*10^3; //[lb/in^2] Ultimate strength\n", "d=0.5; //[in] Diameter of pin\n", "As=%pi*d^2/4; //[in^2] Area of cross section of pin\n", "F=20*10^3; //[lb] Load acting\n", "Ss=F/(2*As); //[lb/in^2] Shear stress\n", "if 0.5*Su>=Ss & 0.6*Su>=Ss then\n", " mprintf('Pin would not fail');\n", "else\n", " mprintf('\n Actual stress is too high and the pin would fail.');\n", "end" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.4: Torsional_Shear_Stress.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;\n", "clear;\n", "mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-3.4 Page No.46\n');\n", "hp=10; //[hp] Power transmitted\n", "rpm=1750; //[rpm] Turning speed\n", "d=0.5; //[in] Diameter of shaft\n", "L=12; //[in] Length of shaft\n", "G=11.5*10^6 //[lb/in^2] shear modulus of elasticity\n", "Su=62000; //[lb/in^2] \n", "T=63000*hp/rpm; //[in*lb] Torque transmitted\n", "Z=%pi*d^3/16; //[in^3] Polar section modulus\n", "Ss=T/Z; //[lb/in^2] Torsional shear stress\n", "//Note- In the book Z=0.025 in^3 is used instead of Z=0.0245437 in^3\n", "mprintf('\na. Stress in the shaft is %f lb/in^2.',Ss)\n", "J=%pi*d^4/32; //[in^4] Polar moment of inertia\n", "theta=T*L/(J*G); //[radians] \n", "//Note- In the book J=0.0061 in^4 is used instead of J=0.0061359 in^4\n", "mprintf('\nb. The angular deflection of shaft would be %f radians',theta);\n", "SF=3; //[] Safety factor based on ultimate strength\n", "Zd=T/(0.5*Su/SF); //[in^3] Polar section modulus required for SF=3\n", "Dd=(16*Zd/%pi)^(1/3); //[in] Diameter of shaft required Z=%pi*d^3/16\n", "mprintf('\nc. Diameter of shaft required is %f in.',Dd);" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.5: Critical_Load_in_Pinned_End_Column.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;\n", "clear;\n", "mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-3.5 Page No.53\n');\n", "L=30; //[in] Length of link\n", "d=5/8; //[in] Diameter of link\n", "I=%pi*d^4/64; //[in^4] Moment of inertia\n", "A=%pi*d^2/4; //[in^2] Area of cross section\n", "E=30*10^6; //[lb/in^2] Modulus of elasticity\n", "r=sqrt(I/A); //[in] Radius of gyration\n", "mprintf('\n The radius of gyration %f in.',r);\n", "K=1; //[] End support condition factor\n", "Le=K*L; //[in] Effective length\n", "mprintf('\n Effective length is %f in',Le);\n", "SR=Le/r; //[] Slenderness ratio\n", "mprintf('\n Slenderness ratio is %f.',SR)\n", "Sy=42000; //[lb/in^2] Yield strength\n", "Cc=sqrt(2*%pi^2*E/Sy); //[] Column constant\n", "mprintf('The column constant is %f.',Cc);\n", "if SR>Cc then\n", " mprintf('\n Slenderness ratio is greater than column constant, so use the euler formula')\n", "end\n", "I=%pi*d^4/64; //[in^4] Moment of inertia\n", "mprintf('\n The moment of inertia is %f in^4',I);\n", "Pc=%pi^2*E*I/Le^2; //[lb] Critical force\n", "//Note- In the book I=0.0075 in^4 is used instead of I=0.0074901 in^4\n", "mprintf('\n The critical force is %f lb.',Pc);" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3.6: Critical_Load_in_Fixed_End_Column.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clc;\n", "clear;\n", "mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-3.6 Page No.55\n');\n", "L=60; //[in] Length of column\n", "Sy=36000; //[lb/in^2] Yield strength\n", "SF=2; //[]Safty factor\n", "E=30*10^6; //[lb/in^2] Modulus of elasticity\n", "A=2.26; //[in^2] Area of cross section (Appendix 5.4)\n", "I=0.764; //[in^4] Moment of inertia (Appendix 5.4)\n", "r=sqrt(I/A); //[in] Radius of gyration\n", "K=0.65; //[] End support condition factor from Figure 3.8\n", "Le=K*L; //[in] Effective length\n", "mprintf('\n The effective length is %f in.',Le);\n", "SR=Le/r; //[] Slenderness ratio\n", "mprintf('\n The slenderness ratio is %f.',SR);\n", "Cc=sqrt(2*%pi^2*E/Sy); //[] Column constant\n", "mprintf('\n The column constant is %f.',Cc);\n", "if Cc>SR then\n", " mprintf('\n The column constant is greater than slenderness ratio, so use the Johnson formula.');\n", "end\n", "F=(A*Sy/SF)*(1-Sy*SR^2/(4*%pi^2*E));\n", "mprintf('\n The acceptable load for a safty factor of 2 is %f lb.',F);" ] } ], "metadata": { "kernelspec": { "display_name": "Scilab", "language": "scilab", "name": "scilab" }, "language_info": { "file_extension": ".sce", "help_links": [ { "text": "MetaKernel Magics", "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" } ], "mimetype": "text/x-octave", "name": "scilab", "version": "0.7.1" } }, "nbformat": 4, "nbformat_minor": 0 }