1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chapter 12: Radiation"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 12.1: The_ratio_of_rates_at_which_heat_lost.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc\n",
"clear\n",
"\n",
"//INPUT\n",
"t1=300;//temperature of the surroundings in K\n",
"t2=900;//temperature of the hot body p in K\n",
"t3=500;//temperature of the hot body q in K\n",
"a=5.67*10^-8;//stefan boltzmann constant in W/m^2.K^4\n",
"\n",
"//CALCULATIONS\n",
"q1=a*(t2^4-t1^4);//heat lost from hot body p in w/m^2\n",
"q2=a*(t3^4-t1^4);//heat lost from hot body q in w/m^2\n",
"q=q1/q2;//ratio of heat lost from two substances\n",
"\n",
"//OUTPUT\n",
"mprintf('ratio of heat lost from two substances is %3.2f',q)"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 12.2: The_stefan_constant.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc\n",
"clear\n",
"\n",
"//INPUT\n",
"t1=573;//temperature of the hot side in K\n",
"t2=273;//temperature of the coll side in K\n",
"m=82;//mass of the black body in gm\n",
"cp=0.1;//specific heat of the black body kj/kg.K\n",
"dt=0.35;//ice melting at a rate of temperature in deg.C/sec\n",
"a=8;//area of black body in sq.cm\n",
"\n",
"//CALCULATIONS\n",
"s=m*cp*dt/(a*(t1^4-t2^4));//boltzmann constant in cal/sq.cm/sec/deg^4\n",
"\n",
"//OUTPUT\n",
"mprintf('boltzmann constant is %3.13f cal/sq.cm/sec/deg^4',s)"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 12.3: The_ratio_of_intensities.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc\n",
"clear\n",
"\n",
"//INPUT\n",
"r1=60;//distance of first black body in cm\n",
"r2=30;//distance of second black body in cm\n",
"t1=873;//temperature of first black body in K\n",
"t2=573;//temperature of the second black body in K\n",
"\n",
"//CALCULATIONS\n",
"i=(t2^4/t1^4)*(r1^2/r2^2);//ratio of intensity of radition\n",
"\n",
"//OUTPUT\n",
"mprintf('ratio of intensity of radition is %3.2f',i)"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 12.4: The_heat_radiated_per_second.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc\n",
"clear\n",
"\n",
"//INPUT\n",
"t1=1373;//temperature of the sphere in K\n",
"t2=283;//temperature of the black body in K\n",
"r=4.17*10^5;//rate of heat radiate in ergs/sq.cm/sec\n",
"a=4*3.14*(6^2);//surface area of the sphere in sq.cm\n",
"\n",
"//CALCULATIONS\n",
"tr=r*a*(t1^4/t2^4)*(2.39005736*10^(-8));//total heat radiated in cal/sec\n",
"\n",
"//OUTPUT\n",
"mprintf('total heat radiated is %3.2f cal/sec',tr)"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 12.5: The_time_for_sun_rays_to_fall.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc\n",
"clear\n",
"\n",
"//INPUT\n",
"h=2*3.14*100;//heat received by the lens per min in cal\n",
"m=25;//mass of the ice in gm\n",
"l=80;//latent heat of ice in cal/gm\n",
"\n",
"//CALCULATIONS\n",
"t=m*l/h;//time for which the sun rays falls in min\n",
"\n",
"//OUTPUT\n",
"mprintf('time for which the sun rays falls is %3.2f min',t)"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 12.6: The_amount_of_heat_reeived.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc\n",
"clear\n",
"\n",
"//INPUT\n",
"d=0.35;//diameter of the mirror in m\n",
"t=5;//time in min\n",
"T=16;//temperature of water found to be in deg.C\n",
"m=60;//mass of water in gm\n",
"mc=30;//mass of calorimeter in gm\n",
"cp=0.1;//specific heat of copper in cal/gm/deg.C\n",
"\n",
"//CALCULATIONS\n",
"q=(m+cp*mc)*T*4/(5*3.14*d^2);//amount of heat received by earth in cal\n",
"\n",
"//OUTPUT\n",
"mprintf('amount of heat received by earth is %3.2f cal',q)"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 12.7: Rate_of_heat_lost.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc\n",
"clear\n",
"\n",
"//INPUT\n",
"r1=5;//radius of first sphere in cm\n",
"r2=10;//radius of second sphere in cm\n",
"t1=700;//temperature of the first sphere in K\n",
"t2=500;//temperature of the second sphere in K\n",
"t=300;//temperature of the enclousure in K\n",
"\n",
"//CALCULATIONS1\n",
"dc=(r2/r1)*(t1^4-t^4)/(t2^4-t^4);//ratio of c1/c2\n",
"r=r1^3*dc/r2^3;//rate of heat loss\n",
"\n",
"//OUTPUT\n",
"mprintf('rate of loss of heat is %3.2f',r)"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 12.8: The_temperature.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc\n",
"clear\n",
"\n",
"//INPUT\n",
"t1=600;//temperature of the black body in K\n",
"t0=300;//temperature of the surroundings in K\n",
"d=6;//deflections in galvanometer\n",
"d1=400;//deflection in divisions\n",
"\n",
"//CALCULATIONS\n",
"dt=(d1/d)*(t1^4-t0^4);//change of temperature\n",
"t2=(dt+t0^4)^(1/4);//end temperature in K\n",
"\n",
"//OUTPUT\n",
"mprintf('end temperature of the temperature is %3.2f K',t2)"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 12.9: The_temperature_of_the_regel.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc\n",
"clear\n",
"\n",
"//INPUT\n",
"n=17000;//luminosity of star compared to sun\n",
"t=6000;//temperature of the sun in K\n",
"\n",
"//CALCULATIONS\n",
"t1=(n*t^4)^(1/4);//temperature of the star in K\n",
"\n",
"//OUTPUT\n",
"mprintf('the temperature of the star is %3.2f K',t1)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Scilab",
"language": "scilab",
"name": "scilab"
},
"language_info": {
"file_extension": ".sce",
"help_links": [
{
"text": "MetaKernel Magics",
"url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
}
],
"mimetype": "text/x-octave",
"name": "scilab",
"version": "0.7.1"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|