summaryrefslogtreecommitdiff
path: root/Heat_And_Thermodynamics_by_A_Manna/12-Radiation.ipynb
diff options
context:
space:
mode:
authorprashantsinalkar2020-04-14 10:19:27 +0530
committerprashantsinalkar2020-04-14 10:23:54 +0530
commit476705d693c7122d34f9b049fa79b935405c9b49 (patch)
tree2b1df110e24ff0174830d7f825f43ff1c134d1af /Heat_And_Thermodynamics_by_A_Manna/12-Radiation.ipynb
parentabb52650288b08a680335531742a7126ad0fb846 (diff)
downloadall-scilab-tbc-books-ipynb-476705d693c7122d34f9b049fa79b935405c9b49.tar.gz
all-scilab-tbc-books-ipynb-476705d693c7122d34f9b049fa79b935405c9b49.tar.bz2
all-scilab-tbc-books-ipynb-476705d693c7122d34f9b049fa79b935405c9b49.zip
Initial commit
Diffstat (limited to 'Heat_And_Thermodynamics_by_A_Manna/12-Radiation.ipynb')
-rw-r--r--Heat_And_Thermodynamics_by_A_Manna/12-Radiation.ipynb325
1 files changed, 325 insertions, 0 deletions
diff --git a/Heat_And_Thermodynamics_by_A_Manna/12-Radiation.ipynb b/Heat_And_Thermodynamics_by_A_Manna/12-Radiation.ipynb
new file mode 100644
index 0000000..5f91908
--- /dev/null
+++ b/Heat_And_Thermodynamics_by_A_Manna/12-Radiation.ipynb
@@ -0,0 +1,325 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 12: Radiation"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.1: The_ratio_of_rates_at_which_heat_lost.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"\n",
+"//INPUT\n",
+"t1=300;//temperature of the surroundings in K\n",
+"t2=900;//temperature of the hot body p in K\n",
+"t3=500;//temperature of the hot body q in K\n",
+"a=5.67*10^-8;//stefan boltzmann constant in W/m^2.K^4\n",
+"\n",
+"//CALCULATIONS\n",
+"q1=a*(t2^4-t1^4);//heat lost from hot body p in w/m^2\n",
+"q2=a*(t3^4-t1^4);//heat lost from hot body q in w/m^2\n",
+"q=q1/q2;//ratio of heat lost from two substances\n",
+"\n",
+"//OUTPUT\n",
+"mprintf('ratio of heat lost from two substances is %3.2f',q)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.2: The_stefan_constant.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"\n",
+"//INPUT\n",
+"t1=573;//temperature of the hot side in K\n",
+"t2=273;//temperature of the coll side in K\n",
+"m=82;//mass of the black body in gm\n",
+"cp=0.1;//specific heat of the black body kj/kg.K\n",
+"dt=0.35;//ice melting at a rate of temperature in deg.C/sec\n",
+"a=8;//area of black body in sq.cm\n",
+"\n",
+"//CALCULATIONS\n",
+"s=m*cp*dt/(a*(t1^4-t2^4));//boltzmann constant in cal/sq.cm/sec/deg^4\n",
+"\n",
+"//OUTPUT\n",
+"mprintf('boltzmann constant is %3.13f cal/sq.cm/sec/deg^4',s)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.3: The_ratio_of_intensities.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"\n",
+"//INPUT\n",
+"r1=60;//distance of first black body in cm\n",
+"r2=30;//distance of second black body in cm\n",
+"t1=873;//temperature of first black body in K\n",
+"t2=573;//temperature of the second black body in K\n",
+"\n",
+"//CALCULATIONS\n",
+"i=(t2^4/t1^4)*(r1^2/r2^2);//ratio of intensity of radition\n",
+"\n",
+"//OUTPUT\n",
+"mprintf('ratio of intensity of radition is %3.2f',i)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.4: The_heat_radiated_per_second.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"\n",
+"//INPUT\n",
+"t1=1373;//temperature of the sphere in K\n",
+"t2=283;//temperature of the black body in K\n",
+"r=4.17*10^5;//rate of heat radiate in ergs/sq.cm/sec\n",
+"a=4*3.14*(6^2);//surface area of the sphere in sq.cm\n",
+"\n",
+"//CALCULATIONS\n",
+"tr=r*a*(t1^4/t2^4)*(2.39005736*10^(-8));//total heat radiated in cal/sec\n",
+"\n",
+"//OUTPUT\n",
+"mprintf('total heat radiated is %3.2f cal/sec',tr)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.5: The_time_for_sun_rays_to_fall.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"\n",
+"//INPUT\n",
+"h=2*3.14*100;//heat received by the lens per min in cal\n",
+"m=25;//mass of the ice in gm\n",
+"l=80;//latent heat of ice in cal/gm\n",
+"\n",
+"//CALCULATIONS\n",
+"t=m*l/h;//time for which the sun rays falls in min\n",
+"\n",
+"//OUTPUT\n",
+"mprintf('time for which the sun rays falls is %3.2f min',t)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.6: The_amount_of_heat_reeived.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"\n",
+"//INPUT\n",
+"d=0.35;//diameter of the mirror in m\n",
+"t=5;//time in min\n",
+"T=16;//temperature of water found to be in deg.C\n",
+"m=60;//mass of water in gm\n",
+"mc=30;//mass of calorimeter in gm\n",
+"cp=0.1;//specific heat of copper in cal/gm/deg.C\n",
+"\n",
+"//CALCULATIONS\n",
+"q=(m+cp*mc)*T*4/(5*3.14*d^2);//amount of heat received by earth in cal\n",
+"\n",
+"//OUTPUT\n",
+"mprintf('amount of heat received by earth is %3.2f cal',q)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.7: Rate_of_heat_lost.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"\n",
+"//INPUT\n",
+"r1=5;//radius of first sphere in cm\n",
+"r2=10;//radius of second sphere in cm\n",
+"t1=700;//temperature of the first sphere in K\n",
+"t2=500;//temperature of the second sphere in K\n",
+"t=300;//temperature of the enclousure in K\n",
+"\n",
+"//CALCULATIONS1\n",
+"dc=(r2/r1)*(t1^4-t^4)/(t2^4-t^4);//ratio of c1/c2\n",
+"r=r1^3*dc/r2^3;//rate of heat loss\n",
+"\n",
+"//OUTPUT\n",
+"mprintf('rate of loss of heat is %3.2f',r)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.8: The_temperature.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"\n",
+"//INPUT\n",
+"t1=600;//temperature of the black body in K\n",
+"t0=300;//temperature of the surroundings in K\n",
+"d=6;//deflections in galvanometer\n",
+"d1=400;//deflection in divisions\n",
+"\n",
+"//CALCULATIONS\n",
+"dt=(d1/d)*(t1^4-t0^4);//change of temperature\n",
+"t2=(dt+t0^4)^(1/4);//end temperature in K\n",
+"\n",
+"//OUTPUT\n",
+"mprintf('end temperature of the temperature is %3.2f K',t2)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.9: The_temperature_of_the_regel.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"\n",
+"//INPUT\n",
+"n=17000;//luminosity of star compared to sun\n",
+"t=6000;//temperature of the sun in K\n",
+"\n",
+"//CALCULATIONS\n",
+"t1=(n*t^4)^(1/4);//temperature of the star in K\n",
+"\n",
+"//OUTPUT\n",
+"mprintf('the temperature of the star is %3.2f K',t1)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}