1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chapter 11: Wind Turbines"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 11.1: WT.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clear all; clc;\n",
"\n",
"Pe=1.5\n",
"Eg=0.96//generator efficiency\n",
"Em=0.94//transmission efficiency\n",
"P=Pe/(Eg*Em)\n",
"printf('\n The power is equal to %0.3f MW',P)\n",
"disp('After converting to W the magnitude of power is equal to 1.662*10^6 W')\n",
"\n",
"Cp=0.47//from figure 11.10\n",
"V=13\n",
"rho=1.222\n",
"disp(' Since P=Cp(0.5*rho*A*V^3),thus on substituting the values we get P=630.9A')\n",
"A=P*10^6/(Cp*0.5*rho*V^3)// Since P=Cp*(0.5*rho*A*V^3)\n",
"printf(' On substituing the value of P in P=630.9A we get A equal to %g',A)\n",
"\n",
"disp('After rounding off,the area is equal to 2634.7m^2')\n",
"Ar=2634.7//rounded off A\n",
"//A=R^2*pi\n",
"R=sqrt(A/%pi)\n",
"printf(' The Radius is equal to %g m',R)\n",
"\n",
"disp('After rounding off the,area is equal to 28.9m')\n",
"Rr=28.9//rounded off\n",
"D=2*Rr\n",
"printf(' The Diameter is equal to %g m',D)\n",
"\n",
"omega=(V/R)*5.3// In the book diameter has been incorrectly substituted in place of radius(R). That is the reason why this particular answer doesn't match with the one given in the book.\n",
"printf('\n Omega is equal to %0.2f rad/s',omega)\n",
"N=(omega*30)/%pi//since N is proportional to omega and the answer for omega doesnt match with the answer given in the book(because of the aforementioned reason), the answer of N doesn't match either.\n",
"printf('\n RPM is equal to %g rpm',N)"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 11.2: WT.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clear all; clc;\n",
"\n",
"V= 40*(5280/3600)\n",
"printf('V is equal to %0.2f ft/s',V)\n",
"N=80\n",
"omega=(N*%pi)/30\n",
"printf('\n\nomega is equal to %0.2f rad/s',omega)\n",
"rt=15\n",
"rh=1\n",
"Vt=(rt*omega)/V//tip velocity ratio\n",
"printf('\n\nThe tip velocity ratio is equal to %0.2f ',Vt)\n",
"\n",
"Zb=12/Vt\n",
"printf('\n \n Optimum number of blades is equal to %0.2f ',Zb)\n",
"disp('On approximating,the optimum number of blades is equal to 5')\n",
"\n",
"rm=[(rt^2+rh^2)/2]^0.5\n",
"printf('\nThe mean radius is equal to %0.2f ft',rm)\n",
"\n",
"Um=rm*omega\n",
"printf('\n\nThe blade peripheral velocity at the mean radius is equal to %0.1f ft/s',Um)\n",
"\n",
"disp('Assuming V1=V')\n",
"beta_1=(atan(Um/V))*180/%pi\n",
"printf('\nThe relative flow angle at the inlet is equal to %0.1f degrees',beta_1)\n",
"\n",
"beta_2=65\n",
"tanbetam=0.5*(tan(beta_1*%pi/180)+tan(beta_2*%pi/180))\n",
"printf('\n\nThe value of tan of beta m is equal to %0.3f ',tanbetam)\n",
"beta_m=(atan(tanbetam))*180/%pi\n",
"printf('\n \n Mean relative flow angle (betam) is equal to %0.2f degrees',beta_m)\n",
"\n",
"Wm=V/cos(beta_m*%pi/180)\n",
"printf('\n\nThe relative flow velocity (Wm) is equal to %0.1f ft/s',Wm)\n",
"\n",
"rho=0.0763\n",
"gc=32.2\n",
"c=1.2\n",
"Cl=0.28\n",
"Cd=0.015\n",
"F_um=(rho*Wm^2*c*(Cl*cos(beta_m*%pi/180)-Cd*sin(beta_m*%pi/180))/(2*32.2))\n",
"printf('\n\nThe tangential force (Fum), is equal to %0.2f lb/ft',F_um)\n",
"\n",
"delta_r=14//rt-rh=deltar\n",
"Z_br=5//approximated value of Zb\n",
"P_s=rm*F_um*delta_r*omega*Z_br/550\n",
"printf('\n\nPs is approximately equal to %0.1f hp',P_s)\n",
"\n",
"A=%pi*rt^2\n",
"A_r=707//rounding of A=706.9 to 707\n",
"P_smax=((8/27)*(rho/gc)*707*58.67^3)/550\n",
"printf('\n\nFrom the actuator theory,the maximum possible shaft power will be equal to %0.1f hp.',P_smax)\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
""
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 11.3: WT.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clear all; clc;\n",
"\n",
"V= 40//in mph\n",
"V=58.9//in mph\n",
"//more accurately\n",
"V= 40*(5280/3600)\n",
"a=0.27\n",
"V1=V*(1-a)\n",
"printf('V1 is equal to %0.1f ft/s',V1)\n",
"\n",
"N=60\n",
"D=50\n",
"U=(N*%pi/30)*(D/2)\n",
"printf('\nU is equal to %0.1f ft/s',U)\n",
"\n",
"//from velocity triangle\n",
"A=90+45\n",
"printf('\nA is equal to %g degrees',A)\n",
"\n",
"//from cosine law\n",
"W=(U^2+V1^2-2*U*V1*cos(A*%pi/180))^0.5\n",
"printf('\nW is equal to %0.1f ft/s',W)\n",
"\n",
"//from sine law\n",
"sinB=V1*(sin(A*%pi/180))/W\n",
"printf('\nsinB is equal to %0.4f ft/s',sinB)\n",
"\n",
"B=asin(sinB)*180/%pi\n",
"printf('\nB is equal to %0.1f degrees',B)\n",
"\n",
"setting_angle=85\n",
"alpha=B-(90-setting_angle)\n",
"printf('\nalpha is equal to %0.1f degrees',alpha)\n",
"\n",
"//from figure\n",
"Cl=0.58\n",
"Cd=0.027\n",
"rho=0.0763\n",
"gc=32.2\n",
"c=1.2\n",
"Wr=189.8//rounded off W\n",
"Fu=rho*Wr^2*c*(Cl*sin(B*%pi/180)-Cd*cos(B*%pi/180))/(2*gc)\n",
"printf('\nFu is equal to %0.3f lb/ft',Fu)\n",
"\n",
"disp('After rounding off the tangential force (Fu) is equal to 3.38 lb/ft')"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Scilab",
"language": "scilab",
"name": "scilab"
},
"language_info": {
"file_extension": ".sce",
"help_links": [
{
"text": "MetaKernel Magics",
"url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
}
],
"mimetype": "text/x-octave",
"name": "scilab",
"version": "0.7.1"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|