summaryrefslogtreecommitdiff
path: root/Fundamentals_Of_Electronics_Devices_by_K_C_Nandi/7-Optoelectonic_Devices.ipynb
blob: 7cb1013039ce783b2477185c03a3b22e72aa1f6f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
{
"cells": [
 {
		   "cell_type": "markdown",
	   "metadata": {},
	   "source": [
       "# Chapter 7: Optoelectonic Devices"
	   ]
	},
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 7.23_1: Open_circuit_voltage.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"// Exa 7.23.1\n",
"clc;\n",
"clear;\n",
"close;\n",
"// Given data\n",
"N_A = 7.5*10^24;// in atoms/m^3\n",
"N_D = 1.5*10^22;// in atoms/m^3\n",
"I_lembda = 12.5*10^-3;// in A/cm^2\n",
"D_e = 25*10^-4;// in m^2/s\n",
"D_h = 1*10^-3;// in m^2/s\n",
"Torque_eo = 500;// in ns\n",
"Torque_ho = 100;// in ns\n",
"n_i = 1.5*10^16;// in /m^3\n",
"e = 1.6*10^-19;\n",
"P_C = 12.5;// in mA/cm^2\n",
"L_e = sqrt(D_e*Torque_ho*10^-9);// in m\n",
"L_e = L_e * 10^6;// in µm\n",
"L_h = sqrt(D_h*Torque_ho*10^-9);// in m\n",
"L_h = L_h * 10^6;// in µm\n",
"J_s = e*((n_i)^2)*( (D_e/(L_e*10^-6*N_A)) + (D_h/(L_h*10^-6*N_D)) );// in A/m^2\n",
"J_s = J_s * 10^-4;// in A/cm^2\n",
"V_T = 26;// in mV\n",
"V_OC = V_T*log( 1+(I_lembda/J_s) );// in mV\n",
"V_OC = V_OC * 10^-3;// in V\n",
"disp(V_OC,'Open circuit voltage in V is');"
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 7.23_2: Photocurrent_density.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"// Exa 7.23.2\n",
"clc;\n",
"clear;\n",
"close;\n",
"// Given data\n",
"Phi_o = 1*10^21;// in m^-2s^-1\n",
"Alpha = 1*10^5;// in m^-1\n",
"W = 25;// in µm\n",
"W =W * 10^-6;// in m\n",
"e = 1.6*10^-19;// in C\n",
"G_L1 = Alpha*Phi_o;// in m^-3s^-1\n",
"G_L2 = Alpha*Phi_o*%e^( (-Alpha*W) );// in m^-3s^-1\n",
"J_L = e*Phi_o*(1-%e^(-Alpha*W));// in A/m^2\n",
"J_L = J_L * 10^-1;// in mA/cm^2\n",
"disp(J_L,'Photo current density in mA/cm^2 is');"
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 7.6_1: Component_value.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"// Exa 7.6.1\n",
"clc;\n",
"clear;\n",
"close;\n",
"// Given data\n",
"O_V = 5;// output voltage in V\n",
"V_D = 1.5;//voltage drop in V\n",
"R = (O_V - V_D)/O_V;\n",
"R = R * 10^3;// in ohm\n",
"disp(R,'The resistance value in Ω is');\n",
"disp('As this is not standard value, use R=680 Ω which is a standard value')"
   ]
   }
],
"metadata": {
		  "kernelspec": {
		   "display_name": "Scilab",
		   "language": "scilab",
		   "name": "scilab"
		  },
		  "language_info": {
		   "file_extension": ".sce",
		   "help_links": [
			{
			 "text": "MetaKernel Magics",
			 "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
			}
		   ],
		   "mimetype": "text/x-octave",
		   "name": "scilab",
		   "version": "0.7.1"
		  }
		 },
		 "nbformat": 4,
		 "nbformat_minor": 0
}