{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 7: Optoelectonic Devices" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 7.23_1: Open_circuit_voltage.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Exa 7.23.1\n", "clc;\n", "clear;\n", "close;\n", "// Given data\n", "N_A = 7.5*10^24;// in atoms/m^3\n", "N_D = 1.5*10^22;// in atoms/m^3\n", "I_lembda = 12.5*10^-3;// in A/cm^2\n", "D_e = 25*10^-4;// in m^2/s\n", "D_h = 1*10^-3;// in m^2/s\n", "Torque_eo = 500;// in ns\n", "Torque_ho = 100;// in ns\n", "n_i = 1.5*10^16;// in /m^3\n", "e = 1.6*10^-19;\n", "P_C = 12.5;// in mA/cm^2\n", "L_e = sqrt(D_e*Torque_ho*10^-9);// in m\n", "L_e = L_e * 10^6;// in µm\n", "L_h = sqrt(D_h*Torque_ho*10^-9);// in m\n", "L_h = L_h * 10^6;// in µm\n", "J_s = e*((n_i)^2)*( (D_e/(L_e*10^-6*N_A)) + (D_h/(L_h*10^-6*N_D)) );// in A/m^2\n", "J_s = J_s * 10^-4;// in A/cm^2\n", "V_T = 26;// in mV\n", "V_OC = V_T*log( 1+(I_lembda/J_s) );// in mV\n", "V_OC = V_OC * 10^-3;// in V\n", "disp(V_OC,'Open circuit voltage in V is');" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 7.23_2: Photocurrent_density.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Exa 7.23.2\n", "clc;\n", "clear;\n", "close;\n", "// Given data\n", "Phi_o = 1*10^21;// in m^-2s^-1\n", "Alpha = 1*10^5;// in m^-1\n", "W = 25;// in µm\n", "W =W * 10^-6;// in m\n", "e = 1.6*10^-19;// in C\n", "G_L1 = Alpha*Phi_o;// in m^-3s^-1\n", "G_L2 = Alpha*Phi_o*%e^( (-Alpha*W) );// in m^-3s^-1\n", "J_L = e*Phi_o*(1-%e^(-Alpha*W));// in A/m^2\n", "J_L = J_L * 10^-1;// in mA/cm^2\n", "disp(J_L,'Photo current density in mA/cm^2 is');" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 7.6_1: Component_value.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Exa 7.6.1\n", "clc;\n", "clear;\n", "close;\n", "// Given data\n", "O_V = 5;// output voltage in V\n", "V_D = 1.5;//voltage drop in V\n", "R = (O_V - V_D)/O_V;\n", "R = R * 10^3;// in ohm\n", "disp(R,'The resistance value in Ω is');\n", "disp('As this is not standard value, use R=680 Ω which is a standard value')" ] } ], "metadata": { "kernelspec": { "display_name": "Scilab", "language": "scilab", "name": "scilab" }, "language_info": { "file_extension": ".sce", "help_links": [ { "text": "MetaKernel Magics", "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" } ], "mimetype": "text/x-octave", "name": "scilab", "version": "0.7.1" } }, "nbformat": 4, "nbformat_minor": 0 }