1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chapter 26: Capacitance"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 26.1: Sample_Problem_1.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"exec('electrostatics.sci', -1)\n",
"\n",
"//Given that\n",
"C = 55*10^-15 //in F\n",
"V = 5.3 //in V\n",
"\n",
"//Sample Problem 26-1\n",
"printf('**Sample Problem 26-1**\n')\n",
"Q = C*V\n",
"n = Q/e\n",
"printf('The number of excess electron is equal to %e', n)"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 26.2: Sample_Problem_2.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"exec('electrostatics.sci', -1)\n",
"\n",
"//Given that\n",
"C1 = 12 //in uF\n",
"C2 = 5.30 //in uF\n",
"C3 = 4.50 //in uF\n",
"V = 12.5 //in Volts\n",
"\n",
"//Sample Problem 26-2a\n",
"printf('**Sample Problem 26-2a**\n')\n",
"C12 = C1 + C2 //in series\n",
"C123 = C12*C3/(C12 + C3) //in parallel\n",
"printf('The equivalent capacitance for the given circuit is %fuF\n', C123)\n",
"\n",
"//Sample Problem 26-2b\n",
"printf('\n**Sample Problem 26-2b**\n')\n",
"Q123 = C123*V\n",
"Q12 = Q123 //in series\n",
"Q1 = Q12*C1/(C1+C2)\n",
"printf('The charge on the capacitor C1 is equal to %fuC', Q1)"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 26.3: Sample_Problem_3.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"//Given that\n",
"C1 = 3.55 //in uF\n",
"Vo = 6.30 //in Volts\n",
"C2 = 8.95 //in uF\n",
"\n",
"//Sample Problem 26-3\n",
"printf('**Sample Problem 26-3**\n')\n",
"qT = C1*Vo //Total charge\n",
"q1 = qT*C1/(C1+C2) //in parallel\n",
"V = q1/C1\n",
"printf('The final potential difference between each capacitor is equal to %fV', V)"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 26.4: Sample_Problem_4.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"exec('electrostatics.sci', -1)\n",
"\n",
"//Given that\n",
"R = 6.85*10^-2 //in m\n",
"q = 1.25*10^-9 //in C\n",
"\n",
"//Sample Problem 26-4a\n",
"printf('**Sample Problem 26-4a**\n')\n",
"C = 4*%pi*Eo*R\n",
"U = q^2/(2*C)\n",
"printf('The electric energy stored is equal to %eJ\n', U)\n",
"\n",
"//Sample Problem 26-4b\n",
"printf('\n**Sample Problem 26-4b**\n')\n",
"E = coulomb(q, 1, R)\n",
"u = 1/2*Eo*E^2\n",
"printf('The energy density is equal to %eJ/m^3', u)"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 26.5: Sample_Problem_5.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"exec('electrostatics.sci', -1)\n",
"\n",
"//Given that\n",
"C = 13.5*10^-12 //in F\n",
"V = 12.5 //in Volts\n",
"x = 6.50\n",
"\n",
"//Sample Problem 26-5\n",
"printf('**Sample Problem 26-5**\n')\n",
"q = C*V\n",
"Ui = q^2/(2*C)\n",
"printf('The initial stored energy is equal to %eJ\n', Ui)\n",
"C = x*C\n",
"Uf = q^2/(2*C)\n",
"printf('The energy stored after the slab is inserted is equal to %eJ', Uf)"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 26.6: Sample_Problem_6.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"exec('electrostatics.sci', -1)\n",
"\n",
"//Given that\n",
"A = 115*10^-4 //in m^2\n",
"d = 1.24*10^-2 //in meter\n",
"Vo = 85.5 //in Volts\n",
"b = 0.780*10^-2 //in meter\n",
"x = 2.61\n",
"\n",
"//Sample Problem 26-6a\n",
"printf('**Sample Problem 26-6a**\n')\n",
"Co = A*Eo/d\n",
"printf('The capacitance of the plates before the dielectric slab is inserted is equal to %fpF\n', Co*10^12)\n",
"\n",
"//Sample Problem 26-6b\n",
"printf('\n**Sample Problem 26-6b**\n')\n",
"Q = Co*Vo\n",
"printf('Free charge on the plates is equal to%fpC\n', Q*10^12)\n",
"\n",
"//Sample Problem 26-6c\n",
"printf('\n**Sample Problem 26-6c**\n')\n",
"E = Q/(A*Eo)\n",
"printf('The electric field is equal to %fV/m\n', E)\n",
"\n",
"//Sample Problem 26-6d\n",
"printf('\n**Sample Problem 26-6d**\n')\n",
"E1 = Q/(A*Eo*x)\n",
"printf('The electric field in dielectric slab is equal to %fV/m\n', E1)\n",
"\n",
"//Sample Problem 26-6e\n",
"printf('\n**Sample Problem 26-6e**\n')\n",
"V = E*(d-b) + E1*b\n",
"printf('The new potential difference is equal to %fV\n', V)\n",
"\n",
"//Sample Problem 26-6f\n",
"printf('\n**Sample Problem 26-6f**\n')\n",
"C = Q/V\n",
"printf('The new capacitance is equal to %fpF', C*10^12)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Scilab",
"language": "scilab",
"name": "scilab"
},
"language_info": {
"file_extension": ".sce",
"help_links": [
{
"text": "MetaKernel Magics",
"url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
}
],
"mimetype": "text/x-octave",
"name": "scilab",
"version": "0.7.1"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|