{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 26: Capacitance" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 26.1: Sample_Problem_1.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "exec('electrostatics.sci', -1)\n", "\n", "//Given that\n", "C = 55*10^-15 //in F\n", "V = 5.3 //in V\n", "\n", "//Sample Problem 26-1\n", "printf('**Sample Problem 26-1**\n')\n", "Q = C*V\n", "n = Q/e\n", "printf('The number of excess electron is equal to %e', n)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 26.2: Sample_Problem_2.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "exec('electrostatics.sci', -1)\n", "\n", "//Given that\n", "C1 = 12 //in uF\n", "C2 = 5.30 //in uF\n", "C3 = 4.50 //in uF\n", "V = 12.5 //in Volts\n", "\n", "//Sample Problem 26-2a\n", "printf('**Sample Problem 26-2a**\n')\n", "C12 = C1 + C2 //in series\n", "C123 = C12*C3/(C12 + C3) //in parallel\n", "printf('The equivalent capacitance for the given circuit is %fuF\n', C123)\n", "\n", "//Sample Problem 26-2b\n", "printf('\n**Sample Problem 26-2b**\n')\n", "Q123 = C123*V\n", "Q12 = Q123 //in series\n", "Q1 = Q12*C1/(C1+C2)\n", "printf('The charge on the capacitor C1 is equal to %fuC', Q1)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 26.3: Sample_Problem_3.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "//Given that\n", "C1 = 3.55 //in uF\n", "Vo = 6.30 //in Volts\n", "C2 = 8.95 //in uF\n", "\n", "//Sample Problem 26-3\n", "printf('**Sample Problem 26-3**\n')\n", "qT = C1*Vo //Total charge\n", "q1 = qT*C1/(C1+C2) //in parallel\n", "V = q1/C1\n", "printf('The final potential difference between each capacitor is equal to %fV', V)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 26.4: Sample_Problem_4.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "exec('electrostatics.sci', -1)\n", "\n", "//Given that\n", "R = 6.85*10^-2 //in m\n", "q = 1.25*10^-9 //in C\n", "\n", "//Sample Problem 26-4a\n", "printf('**Sample Problem 26-4a**\n')\n", "C = 4*%pi*Eo*R\n", "U = q^2/(2*C)\n", "printf('The electric energy stored is equal to %eJ\n', U)\n", "\n", "//Sample Problem 26-4b\n", "printf('\n**Sample Problem 26-4b**\n')\n", "E = coulomb(q, 1, R)\n", "u = 1/2*Eo*E^2\n", "printf('The energy density is equal to %eJ/m^3', u)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 26.5: Sample_Problem_5.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "exec('electrostatics.sci', -1)\n", "\n", "//Given that\n", "C = 13.5*10^-12 //in F\n", "V = 12.5 //in Volts\n", "x = 6.50\n", "\n", "//Sample Problem 26-5\n", "printf('**Sample Problem 26-5**\n')\n", "q = C*V\n", "Ui = q^2/(2*C)\n", "printf('The initial stored energy is equal to %eJ\n', Ui)\n", "C = x*C\n", "Uf = q^2/(2*C)\n", "printf('The energy stored after the slab is inserted is equal to %eJ', Uf)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 26.6: Sample_Problem_6.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "exec('electrostatics.sci', -1)\n", "\n", "//Given that\n", "A = 115*10^-4 //in m^2\n", "d = 1.24*10^-2 //in meter\n", "Vo = 85.5 //in Volts\n", "b = 0.780*10^-2 //in meter\n", "x = 2.61\n", "\n", "//Sample Problem 26-6a\n", "printf('**Sample Problem 26-6a**\n')\n", "Co = A*Eo/d\n", "printf('The capacitance of the plates before the dielectric slab is inserted is equal to %fpF\n', Co*10^12)\n", "\n", "//Sample Problem 26-6b\n", "printf('\n**Sample Problem 26-6b**\n')\n", "Q = Co*Vo\n", "printf('Free charge on the plates is equal to%fpC\n', Q*10^12)\n", "\n", "//Sample Problem 26-6c\n", "printf('\n**Sample Problem 26-6c**\n')\n", "E = Q/(A*Eo)\n", "printf('The electric field is equal to %fV/m\n', E)\n", "\n", "//Sample Problem 26-6d\n", "printf('\n**Sample Problem 26-6d**\n')\n", "E1 = Q/(A*Eo*x)\n", "printf('The electric field in dielectric slab is equal to %fV/m\n', E1)\n", "\n", "//Sample Problem 26-6e\n", "printf('\n**Sample Problem 26-6e**\n')\n", "V = E*(d-b) + E1*b\n", "printf('The new potential difference is equal to %fV\n', V)\n", "\n", "//Sample Problem 26-6f\n", "printf('\n**Sample Problem 26-6f**\n')\n", "C = Q/V\n", "printf('The new capacitance is equal to %fpF', C*10^12)" ] } ], "metadata": { "kernelspec": { "display_name": "Scilab", "language": "scilab", "name": "scilab" }, "language_info": { "file_extension": ".sce", "help_links": [ { "text": "MetaKernel Magics", "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" } ], "mimetype": "text/x-octave", "name": "scilab", "version": "0.7.1" } }, "nbformat": 4, "nbformat_minor": 0 }