1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chapter 10: Optical amplifiers"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 10.1: refractive_index_and_spectral_bandwidth.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"//Example 10.1;refractive index and bandwidth\n",
"clc;\n",
"clear;\n",
"close;\n",
"//given data :\n",
"format('v',5)\n",
"lamda=1.55*10^-6;// in m\n",
"del_lamda=1*10^-9;// in m\n",
"L=320*10^-6;// in m\n",
"n=(lamda)^2/(2*del_lamda*L);\n",
"Gs=10^(5/10);// 5 dB is equivalent to 3.16\n",
"R1=30/100;\n",
"R2=R1;\n",
"c=3*10^8;// in m/s\n",
"del_v=(c/(%pi*n*L))*asin((1-(Gs*sqrt(R1*R2)))/(sqrt(4*Gs*sqrt(R1*R2))));\n",
"disp(n,'refrative index is')\n",
"format('v',6)\n",
"disp(del_v*10^-9,'spectral bandwidth in GHz is')\n",
"//bandwidth is calculated wrong in the textbook"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 10.2: small_signal_gain_and_maximum_possible_achievable_gain.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"//Example 10.2;small-signal gain of EDFA and maximum pssible achievable gain\n",
"clc;\n",
"clear;\n",
"close;\n",
"ts=0.80;//\n",
"sa=4.6444*10^-25;//in m^2\n",
"n12=6*10^24;//m^-3\n",
"se=4.644*10^-25;//m^2\n",
"n21=0.70;//\n",
"l=7;//in meter\n",
"x=((sa*n12*l*(((se/sa)+1)*n21-1)));//\n",
"G=ts*exp(x);//\n",
"Gdb=10*log10(G);//\n",
"Gmax=exp(se*n12*l);//\n",
"Gmaxdb=10*log10(Gmax);//\n",
"disp(Gdb,'small signal gain of EDFA in dB is')\n",
"disp(Gmaxdb,'maximum possible achievable gain in dB is')"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 10.3: output_signal_power_and_overall_gain.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"//Example 10.3;output signal power and overall gain\n",
"clc;\n",
"clear;\n",
"close;\n",
"format('v',6)\n",
"disp('part (a)')\n",
"psin=1*10^-6;//in watts\n",
"ppin=1;//in watts\n",
"gr=5*10^-14;//mW^-1\n",
"ap1=60*10^-12;//m^2\n",
"l=2000;//meter\n",
"asdb=0.15;//dB/km\n",
"as=3.39*10^-5;//m^-1\n",
"apdb=0.20;//db/km\n",
"ap=4.50*10^-5;//m^-1\n",
"z=(1-exp(-ap*l))/ap;//\n",
"y=(gr/ap1);//\n",
"y1=z*y;//\n",
"y2=y1-(as*l);//\n",
"psl=psin*exp(y2);//\n",
"disp(psl*10^6,'output signal power for forward pumping in micro Watt is')\n",
"format('v',5)\n",
"disp('part (b)')\n",
"y1=z*y;//\n",
"y2=y1-(as*l);//\n",
"psl=psin*exp(y2);//\n",
"gfra=psl/(psin);//\n",
"Gdb=10*log10(gfra);//\n",
"disp(Gdb,'overall gain in dB is')"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Scilab",
"language": "scilab",
"name": "scilab"
},
"language_info": {
"file_extension": ".sce",
"help_links": [
{
"text": "MetaKernel Magics",
"url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
}
],
"mimetype": "text/x-octave",
"name": "scilab",
"version": "0.7.1"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|