summaryrefslogtreecommitdiff
path: root/Engineering_Physics_by_V_Yadav/8-Laser.ipynb
blob: cb04ca19bde5103c3c2a2d939725773ee1f9f77c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
{
"cells": [
 {
		   "cell_type": "markdown",
	   "metadata": {},
	   "source": [
       "# Chapter 8: Laser"
	   ]
	},
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 8.1: EX8_1.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"// Scilab Code Ex8.1:: Page-8.8 (2009)\n",
"clc; clear;\n",
"lambda = 31235;   // Wavelength of prominent emission of laser, aangstrom\n",
"E = 12400/lambda;   // Energy difference between the two levels, eV\n",
"\n",
"printf('\nThe difference between upper and lower energy levels for the most prominent wavelength  = %5.3f eV', E);\n",
"\n",
"// Result \n",
"// The difference between upper and lower energy levels for the most prominent wavelength  = 0.397 eV "
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 8.2: Frequency_and_wavelength_of_carbon_dioxide_laser.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"// Scilab Code Ex8.2:: Page-8.8 (2009)\n",
"clc; clear;\n",
"E = 0.121;   // Energy difference between the two levels, eV\n",
"lambda = 12400/E;   // Wavelength of the radiation, angstrom\n",
"f = 3e+08/(lambda*1e-010);  // Frequency of the radiation, Hz\n",
"\n",
"printf('\nThe wavelength of the radiation = %8.1f angstrom', lambda);\n",
"printf('\nThe frequency of the radiation = %4.2e Hz', f);\n",
"\n",
"// Result \n",
"// The wavelength of the radiation = 102479.3 angstrom\n",
"// The frequency of the radiation = 2.93e+13 Hz "
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 8.3: Energy_of_one_emitted_photon_and_total_energy_available_per_laser_pulse.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"// Scilab Code Ex8.3:: Page-8.8 (2009)\n",
"clc; clear;\n",
"lambda = 7000;  // Wavelength of the Ruby laser, angstrom\n",
"e = 1.6e-019;   // Energy equivalent of 1 eV, J/eV\n",
"N = 2.8e+019;   // Total number of photons\n",
"E = 12400/lambda;   // Energy of one emitted photon, eV\n",
"E_p = E*e*N;    // Total energy available per laser pulse, joule\n",
"\n",
"printf('\nThe energy of one emitted photon = %4.2e J', E*e);\n",
"printf('\nThe total energy available per laser pulse = %4.2f joule', E_p);\n",
"\n",
"// Result \n",
"// The energy of one emitted photon = 2.83e-19 J\n",
"// The total energy available per laser pulse = 7.94 joule "
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 8.4: Relative_population_of_levels_in_Ruby_laser.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"// Scilab Code Ex8.4:: Page-8.9 (2009)\n",
"clc; clear;\n",
"lambda = 7000;  // Wavelength of the emitted light, angstrom\n",
"k = 8.6e-005;   // Boltzmann constant, eV/K\n",
"dE = 12400/lambda;  // Energy difference of the levels, eV\n",
"T = [300 500];   // Temperatures of first and second states, K\n",
"for i = 1:1:2\n",
"    N2_ratio_N1 = exp(-(dE/(k*T(i))));  // Relative population\n",
"    printf('\nThe relative population at %d K = %3.1e', T(i), N2_ratio_N1);\n",
"end\n",
"\n",
"// Result \n",
"// The relative population at 300 K = 1.5e-30\n",
"// The relative population at 500 K = 1.3e-18 \n",
"// The answer is given wrong in the textbook for first part."
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 8.5: Population_of_two_states_in_He_Ne_laser.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"// Scilab Code Ex8.5:: Page-8.9 (2009)\n",
"clc; clear;\n",
"lambda = 7000;  // Wavelength of the emitted light, angstrom\n",
"k = 8.6e-005;   // Boltzmann constant, eV/K\n",
"dE = 12400/lambda;  // Energy difference of the levels, eV\n",
"T = 27+273;   // Temperatures of the state, K\n",
"N2_ratio_N1 = exp(-(dE/(k*T)));  // Relative population\n",
"printf('\nThe relative population of two states in He-Ne laser at %d K = %3.1e', T, N2_ratio_N1);\n",
"\n",
"\n",
"// Result \n",
"// The relative population of two states in He-Ne laser at 300 K = 1.5e-30 \n",
"// The answer is given wrong in the textbook"
   ]
   }
],
"metadata": {
		  "kernelspec": {
		   "display_name": "Scilab",
		   "language": "scilab",
		   "name": "scilab"
		  },
		  "language_info": {
		   "file_extension": ".sce",
		   "help_links": [
			{
			 "text": "MetaKernel Magics",
			 "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
			}
		   ],
		   "mimetype": "text/x-octave",
		   "name": "scilab",
		   "version": "0.7.1"
		  }
		 },
		 "nbformat": 4,
		 "nbformat_minor": 0
}