diff options
Diffstat (limited to 'Engineering_Physics_by_V_Yadav/8-Laser.ipynb')
-rw-r--r-- | Engineering_Physics_by_V_Yadav/8-Laser.ipynb | 184 |
1 files changed, 184 insertions, 0 deletions
diff --git a/Engineering_Physics_by_V_Yadav/8-Laser.ipynb b/Engineering_Physics_by_V_Yadav/8-Laser.ipynb new file mode 100644 index 0000000..cb04ca1 --- /dev/null +++ b/Engineering_Physics_by_V_Yadav/8-Laser.ipynb @@ -0,0 +1,184 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 8: Laser" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.1: EX8_1.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab Code Ex8.1:: Page-8.8 (2009)\n", +"clc; clear;\n", +"lambda = 31235; // Wavelength of prominent emission of laser, aangstrom\n", +"E = 12400/lambda; // Energy difference between the two levels, eV\n", +"\n", +"printf('\nThe difference between upper and lower energy levels for the most prominent wavelength = %5.3f eV', E);\n", +"\n", +"// Result \n", +"// The difference between upper and lower energy levels for the most prominent wavelength = 0.397 eV " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.2: Frequency_and_wavelength_of_carbon_dioxide_laser.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab Code Ex8.2:: Page-8.8 (2009)\n", +"clc; clear;\n", +"E = 0.121; // Energy difference between the two levels, eV\n", +"lambda = 12400/E; // Wavelength of the radiation, angstrom\n", +"f = 3e+08/(lambda*1e-010); // Frequency of the radiation, Hz\n", +"\n", +"printf('\nThe wavelength of the radiation = %8.1f angstrom', lambda);\n", +"printf('\nThe frequency of the radiation = %4.2e Hz', f);\n", +"\n", +"// Result \n", +"// The wavelength of the radiation = 102479.3 angstrom\n", +"// The frequency of the radiation = 2.93e+13 Hz " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.3: Energy_of_one_emitted_photon_and_total_energy_available_per_laser_pulse.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab Code Ex8.3:: Page-8.8 (2009)\n", +"clc; clear;\n", +"lambda = 7000; // Wavelength of the Ruby laser, angstrom\n", +"e = 1.6e-019; // Energy equivalent of 1 eV, J/eV\n", +"N = 2.8e+019; // Total number of photons\n", +"E = 12400/lambda; // Energy of one emitted photon, eV\n", +"E_p = E*e*N; // Total energy available per laser pulse, joule\n", +"\n", +"printf('\nThe energy of one emitted photon = %4.2e J', E*e);\n", +"printf('\nThe total energy available per laser pulse = %4.2f joule', E_p);\n", +"\n", +"// Result \n", +"// The energy of one emitted photon = 2.83e-19 J\n", +"// The total energy available per laser pulse = 7.94 joule " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.4: Relative_population_of_levels_in_Ruby_laser.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab Code Ex8.4:: Page-8.9 (2009)\n", +"clc; clear;\n", +"lambda = 7000; // Wavelength of the emitted light, angstrom\n", +"k = 8.6e-005; // Boltzmann constant, eV/K\n", +"dE = 12400/lambda; // Energy difference of the levels, eV\n", +"T = [300 500]; // Temperatures of first and second states, K\n", +"for i = 1:1:2\n", +" N2_ratio_N1 = exp(-(dE/(k*T(i)))); // Relative population\n", +" printf('\nThe relative population at %d K = %3.1e', T(i), N2_ratio_N1);\n", +"end\n", +"\n", +"// Result \n", +"// The relative population at 300 K = 1.5e-30\n", +"// The relative population at 500 K = 1.3e-18 \n", +"// The answer is given wrong in the textbook for first part." + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.5: Population_of_two_states_in_He_Ne_laser.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab Code Ex8.5:: Page-8.9 (2009)\n", +"clc; clear;\n", +"lambda = 7000; // Wavelength of the emitted light, angstrom\n", +"k = 8.6e-005; // Boltzmann constant, eV/K\n", +"dE = 12400/lambda; // Energy difference of the levels, eV\n", +"T = 27+273; // Temperatures of the state, K\n", +"N2_ratio_N1 = exp(-(dE/(k*T))); // Relative population\n", +"printf('\nThe relative population of two states in He-Ne laser at %d K = %3.1e', T, N2_ratio_N1);\n", +"\n", +"\n", +"// Result \n", +"// The relative population of two states in He-Ne laser at 300 K = 1.5e-30 \n", +"// The answer is given wrong in the textbook" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |