summaryrefslogtreecommitdiff
path: root/Engineering_Physics_by_V_Yadav/8-Laser.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Engineering_Physics_by_V_Yadav/8-Laser.ipynb')
-rw-r--r--Engineering_Physics_by_V_Yadav/8-Laser.ipynb184
1 files changed, 184 insertions, 0 deletions
diff --git a/Engineering_Physics_by_V_Yadav/8-Laser.ipynb b/Engineering_Physics_by_V_Yadav/8-Laser.ipynb
new file mode 100644
index 0000000..cb04ca1
--- /dev/null
+++ b/Engineering_Physics_by_V_Yadav/8-Laser.ipynb
@@ -0,0 +1,184 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 8: Laser"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.1: EX8_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex8.1:: Page-8.8 (2009)\n",
+"clc; clear;\n",
+"lambda = 31235; // Wavelength of prominent emission of laser, aangstrom\n",
+"E = 12400/lambda; // Energy difference between the two levels, eV\n",
+"\n",
+"printf('\nThe difference between upper and lower energy levels for the most prominent wavelength = %5.3f eV', E);\n",
+"\n",
+"// Result \n",
+"// The difference between upper and lower energy levels for the most prominent wavelength = 0.397 eV "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.2: Frequency_and_wavelength_of_carbon_dioxide_laser.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex8.2:: Page-8.8 (2009)\n",
+"clc; clear;\n",
+"E = 0.121; // Energy difference between the two levels, eV\n",
+"lambda = 12400/E; // Wavelength of the radiation, angstrom\n",
+"f = 3e+08/(lambda*1e-010); // Frequency of the radiation, Hz\n",
+"\n",
+"printf('\nThe wavelength of the radiation = %8.1f angstrom', lambda);\n",
+"printf('\nThe frequency of the radiation = %4.2e Hz', f);\n",
+"\n",
+"// Result \n",
+"// The wavelength of the radiation = 102479.3 angstrom\n",
+"// The frequency of the radiation = 2.93e+13 Hz "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.3: Energy_of_one_emitted_photon_and_total_energy_available_per_laser_pulse.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex8.3:: Page-8.8 (2009)\n",
+"clc; clear;\n",
+"lambda = 7000; // Wavelength of the Ruby laser, angstrom\n",
+"e = 1.6e-019; // Energy equivalent of 1 eV, J/eV\n",
+"N = 2.8e+019; // Total number of photons\n",
+"E = 12400/lambda; // Energy of one emitted photon, eV\n",
+"E_p = E*e*N; // Total energy available per laser pulse, joule\n",
+"\n",
+"printf('\nThe energy of one emitted photon = %4.2e J', E*e);\n",
+"printf('\nThe total energy available per laser pulse = %4.2f joule', E_p);\n",
+"\n",
+"// Result \n",
+"// The energy of one emitted photon = 2.83e-19 J\n",
+"// The total energy available per laser pulse = 7.94 joule "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.4: Relative_population_of_levels_in_Ruby_laser.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex8.4:: Page-8.9 (2009)\n",
+"clc; clear;\n",
+"lambda = 7000; // Wavelength of the emitted light, angstrom\n",
+"k = 8.6e-005; // Boltzmann constant, eV/K\n",
+"dE = 12400/lambda; // Energy difference of the levels, eV\n",
+"T = [300 500]; // Temperatures of first and second states, K\n",
+"for i = 1:1:2\n",
+" N2_ratio_N1 = exp(-(dE/(k*T(i)))); // Relative population\n",
+" printf('\nThe relative population at %d K = %3.1e', T(i), N2_ratio_N1);\n",
+"end\n",
+"\n",
+"// Result \n",
+"// The relative population at 300 K = 1.5e-30\n",
+"// The relative population at 500 K = 1.3e-18 \n",
+"// The answer is given wrong in the textbook for first part."
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.5: Population_of_two_states_in_He_Ne_laser.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex8.5:: Page-8.9 (2009)\n",
+"clc; clear;\n",
+"lambda = 7000; // Wavelength of the emitted light, angstrom\n",
+"k = 8.6e-005; // Boltzmann constant, eV/K\n",
+"dE = 12400/lambda; // Energy difference of the levels, eV\n",
+"T = 27+273; // Temperatures of the state, K\n",
+"N2_ratio_N1 = exp(-(dE/(k*T))); // Relative population\n",
+"printf('\nThe relative population of two states in He-Ne laser at %d K = %3.1e', T, N2_ratio_N1);\n",
+"\n",
+"\n",
+"// Result \n",
+"// The relative population of two states in He-Ne laser at 300 K = 1.5e-30 \n",
+"// The answer is given wrong in the textbook"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}