summaryrefslogtreecommitdiff
path: root/Engineering_Physics_by_G_Aruldhas/5-POLARIZATION.ipynb
blob: b3c27514f1746be950859ca4a680b6ebc402a5b7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
{
"cells": [
 {
		   "cell_type": "markdown",
	   "metadata": {},
	   "source": [
       "# Chapter 5: POLARIZATION"
	   ]
	},
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 5.1: Polarization_by_reflection.sci"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"// Scilab Code Ex5.1 : Polarization by reflection: Page-113 (2010)\n",
"mu_g = 1.72;    // Refractive index of glass\n",
"mu_w = 4/3;    // Refractive index of water\n",
"// For polarization to occur on flint glass, tan(i) = mu_g/mu_w\n",
"// Solving for i\n",
"i = atand(mu_g/mu_w);\n",
"printf('\nThe angle of incidence for complete polarization to occur on flint glass = %4.1f degrees', i);\n",
"// For polarization to occur on water, tan(i) = mu_w/mu_g\n",
"// Solving for i\n",
"i = atand(mu_w/mu_g);\n",
"printf('\nThe angle of incidence for complete polarization to occur on water = %5.2f degrees', i);\n",
"\n",
"// Result \n",
"// The angle of incidence for complete polarization to occur on flint glass = 52.2 degrees\n",
"// The angle of incidence for complete polarization to occur on water = 37.78 degrees "
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 5.2: Percentage_transmission_of_polarized_light.sci"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"// Scilab Code Ex5.2 : Percentage transmission of polarized light: Page-113 (2010)\n",
"I0 = 1;    // For simplicity, we assume the intensity of light falling on the second Nicol prism to be unity, watt per metre square\n",
"theta = 30;    // Angle through which the crossed Nicol is rotated, degrees\n",
"I = I0*cosd(90-theta)^2;    // Intensity of the emerging light from second Nicol, watt per metre square\n",
"T = I/(2*I0)*100;    // Percentage transmission of incident light\n",
"printf('\nThe percentage transmission of incident light after emerging through the Nicol prism = %4.1f percent', T);\n",
"\n",
"// Result \n",
"// The percentage transmission of incident light after emerging through the Nicol prism = 12.5 percent "
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 5.3: Thickness_of_Quarter_Wave_Plate.sci"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"// Scilab Code Ex5.3 : Thickness of Quarter Wave Plate : Page-113 (2010)\n",
"lambda = 6000e-008;    // Wavelength of incident light, cm\n",
"mu_e = 1.55;    // Refractive index of extraordinary ray\n",
"mu_o = 1.54;    // Refractive index of ordinary ray\n",
"t = lambda/(4*(mu_e - mu_o));    // Thickness of Quarter Wave plate of positive crystal, cm\n",
"printf('\nThe thickness of Quarter Wave plate = %6.4f cm', t);\n",
"\n",
"// Result \n",
"// The thickness of Quarter Wave plate = 0.0015 cm"
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 5.4: Behaviour_of_half_wave_plate_for_increased_wavelength.sci"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"// Scilab Code Ex5.4 : Behaviour of half wave plate for increased wavelength : Page-114 (2010)\n",
"lambda = 1;    // For simplicity, wavelength of incident light is assumed to be , cm\n",
"mu_e = 1.55;    // Refractive index of extraordinary ray\n",
"mu_o = 1.54;    // Refractive index of ordinary ray\n",
"t = lambda/(2*(mu_e - mu_o));    // Thickness of Half Wave plate for given lambda, cm\n",
"t_prime = 2*lambda/(2*(mu_e - mu_o));  // Thickness of Half Wave plate for twice lambda, cm\n",
"printf('\nThe thickness of half wave plate is %2.1f times that of the quarter wave plate.', t/t_prime);\n",
"printf('\nThe half wave plate behaves as a quarter wave plate for twice the wavelength of incident light.');\n",
"\n",
"// Result \n",
"// The thickness of half wave plate is 0.5 times that of the quarter wave plate.\n",
"// The half wave plate behaves as a quarter wave plate for twice the wavelength of incident light."
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 5.5: Phase_retardation_for_quartz.sci"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"// Scilab Code Ex5.5 : Phase retardation for quartz : Page-114 (2010)\n",
"lambda = 500e-09;    // Wavelength of incident light, m\n",
"mu_e = 1.5508;    // Refractive index of extraordinary ray\n",
"mu_o = 1.5418;    // Refractive index of ordinary ray\n",
"t = 0.032e-03;    // Thickness of quartz plate, m\n",
"dx = (mu_e - mu_o)*t;    // Path difference between E-ray and O-ray, m\n",
"dphi = (2*%pi)/lambda*dx;    // Phase retardation for quartz for given wavelength, rad\n",
"printf('\nThe phase retardation for quartz for given wavelength = %5.3f pi rad', dphi/%pi);\n",
"\n",
"// Result \n",
"// The phase retardation for quartz for given wavelength = 1.152 pi rad"
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 5.6: Brewster_angle_at_the_boundary_between_two_materials.sci"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"// Scilab Code Ex5.6 : Brewster angle at the boundary between two materials : Page-114 (2010)\n",
"C = 52;    // Critical angle for total internal reflection at a boundary between two materials, degrees\n",
"// From Brewster's law, tand(i_B) = 1_mu_2\n",
"// Also sind(C) = 1_mu_2, so that\n",
"// tand(i_B) = sind(C), solving for i_B\n",
"i_B = atand(sind(C));    // Brewster angle at the boundary, degrees\n",
"printf('\nThe Brewster angle at the boundary between two materials = %2d degrees', i_B);\n",
"\n",
"// Result \n",
"// The Brewster angle at the boundary between two materials = 38 degrees "
   ]
   }
],
"metadata": {
		  "kernelspec": {
		   "display_name": "Scilab",
		   "language": "scilab",
		   "name": "scilab"
		  },
		  "language_info": {
		   "file_extension": ".sce",
		   "help_links": [
			{
			 "text": "MetaKernel Magics",
			 "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
			}
		   ],
		   "mimetype": "text/x-octave",
		   "name": "scilab",
		   "version": "0.7.1"
		  }
		 },
		 "nbformat": 4,
		 "nbformat_minor": 0
}