{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 5: POLARIZATION" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5.1: Polarization_by_reflection.sci" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Scilab Code Ex5.1 : Polarization by reflection: Page-113 (2010)\n", "mu_g = 1.72; // Refractive index of glass\n", "mu_w = 4/3; // Refractive index of water\n", "// For polarization to occur on flint glass, tan(i) = mu_g/mu_w\n", "// Solving for i\n", "i = atand(mu_g/mu_w);\n", "printf('\nThe angle of incidence for complete polarization to occur on flint glass = %4.1f degrees', i);\n", "// For polarization to occur on water, tan(i) = mu_w/mu_g\n", "// Solving for i\n", "i = atand(mu_w/mu_g);\n", "printf('\nThe angle of incidence for complete polarization to occur on water = %5.2f degrees', i);\n", "\n", "// Result \n", "// The angle of incidence for complete polarization to occur on flint glass = 52.2 degrees\n", "// The angle of incidence for complete polarization to occur on water = 37.78 degrees " ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5.2: Percentage_transmission_of_polarized_light.sci" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Scilab Code Ex5.2 : Percentage transmission of polarized light: Page-113 (2010)\n", "I0 = 1; // For simplicity, we assume the intensity of light falling on the second Nicol prism to be unity, watt per metre square\n", "theta = 30; // Angle through which the crossed Nicol is rotated, degrees\n", "I = I0*cosd(90-theta)^2; // Intensity of the emerging light from second Nicol, watt per metre square\n", "T = I/(2*I0)*100; // Percentage transmission of incident light\n", "printf('\nThe percentage transmission of incident light after emerging through the Nicol prism = %4.1f percent', T);\n", "\n", "// Result \n", "// The percentage transmission of incident light after emerging through the Nicol prism = 12.5 percent " ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5.3: Thickness_of_Quarter_Wave_Plate.sci" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Scilab Code Ex5.3 : Thickness of Quarter Wave Plate : Page-113 (2010)\n", "lambda = 6000e-008; // Wavelength of incident light, cm\n", "mu_e = 1.55; // Refractive index of extraordinary ray\n", "mu_o = 1.54; // Refractive index of ordinary ray\n", "t = lambda/(4*(mu_e - mu_o)); // Thickness of Quarter Wave plate of positive crystal, cm\n", "printf('\nThe thickness of Quarter Wave plate = %6.4f cm', t);\n", "\n", "// Result \n", "// The thickness of Quarter Wave plate = 0.0015 cm" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5.4: Behaviour_of_half_wave_plate_for_increased_wavelength.sci" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Scilab Code Ex5.4 : Behaviour of half wave plate for increased wavelength : Page-114 (2010)\n", "lambda = 1; // For simplicity, wavelength of incident light is assumed to be , cm\n", "mu_e = 1.55; // Refractive index of extraordinary ray\n", "mu_o = 1.54; // Refractive index of ordinary ray\n", "t = lambda/(2*(mu_e - mu_o)); // Thickness of Half Wave plate for given lambda, cm\n", "t_prime = 2*lambda/(2*(mu_e - mu_o)); // Thickness of Half Wave plate for twice lambda, cm\n", "printf('\nThe thickness of half wave plate is %2.1f times that of the quarter wave plate.', t/t_prime);\n", "printf('\nThe half wave plate behaves as a quarter wave plate for twice the wavelength of incident light.');\n", "\n", "// Result \n", "// The thickness of half wave plate is 0.5 times that of the quarter wave plate.\n", "// The half wave plate behaves as a quarter wave plate for twice the wavelength of incident light." ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5.5: Phase_retardation_for_quartz.sci" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Scilab Code Ex5.5 : Phase retardation for quartz : Page-114 (2010)\n", "lambda = 500e-09; // Wavelength of incident light, m\n", "mu_e = 1.5508; // Refractive index of extraordinary ray\n", "mu_o = 1.5418; // Refractive index of ordinary ray\n", "t = 0.032e-03; // Thickness of quartz plate, m\n", "dx = (mu_e - mu_o)*t; // Path difference between E-ray and O-ray, m\n", "dphi = (2*%pi)/lambda*dx; // Phase retardation for quartz for given wavelength, rad\n", "printf('\nThe phase retardation for quartz for given wavelength = %5.3f pi rad', dphi/%pi);\n", "\n", "// Result \n", "// The phase retardation for quartz for given wavelength = 1.152 pi rad" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5.6: Brewster_angle_at_the_boundary_between_two_materials.sci" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Scilab Code Ex5.6 : Brewster angle at the boundary between two materials : Page-114 (2010)\n", "C = 52; // Critical angle for total internal reflection at a boundary between two materials, degrees\n", "// From Brewster's law, tand(i_B) = 1_mu_2\n", "// Also sind(C) = 1_mu_2, so that\n", "// tand(i_B) = sind(C), solving for i_B\n", "i_B = atand(sind(C)); // Brewster angle at the boundary, degrees\n", "printf('\nThe Brewster angle at the boundary between two materials = %2d degrees', i_B);\n", "\n", "// Result \n", "// The Brewster angle at the boundary between two materials = 38 degrees " ] } ], "metadata": { "kernelspec": { "display_name": "Scilab", "language": "scilab", "name": "scilab" }, "language_info": { "file_extension": ".sce", "help_links": [ { "text": "MetaKernel Magics", "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" } ], "mimetype": "text/x-octave", "name": "scilab", "version": "0.7.1" } }, "nbformat": 4, "nbformat_minor": 0 }