1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chapter 8: Magnetic materials"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 8.1: Determine_magnitude_and_direction_of_magnetic_moment.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// chapter 8 , Example 8.1 , pg 238\n",
"I=12 // current(in A)\n",
"A=7.5*10^-4 //area(in m^2)\n",
"M=I*A //magnetic moment associated with the loop\n",
"printf('Magnetic moment associated with the loop(in A m^2)=')\n",
"disp(M)\n",
"printf('M is directed away from the observer and is perpendicular to the plane of the loop')"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 8.2: Determine_magnetic_moment.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// chapter 8 , Example 8.2 , pg 238\n",
"r=0.5*10^-10 //radius of orbit (in m)\n",
"e= 1.6*10^-19 //charge on electron (in C)\n",
"n=10^16 //frequency of revolution of electron (in rps)\n",
"I=e*n //current (in A)\n",
"A=%pi *r^2 //area (in m^2)\n",
"M=I*A //magnetic moment associated with motion of electron \n",
"printf('Magnetic moment associated with motion of electron (in A m^2)')\n",
"disp(M)"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 8.3: calculate_magnetic_susceptibility.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// chapter 8 , Example 8.3 , pg 239\n",
"ur=5000 //relative permeability\n",
"xm=ur-1 //magnetic susceptibility\n",
"printf('Magnetic susceptibility=')\n",
"disp(xm)"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 8.4: calculate_permeability.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// chapter 8 , Example 8.4 , pg 239\n",
"H=1800 //magnetizing field (in A/m)\n",
"phi=3*10^-5 //magnetic flux (in Wb)\n",
"A=0.2 *10^-4 //area (in m^2)\n",
"B=phi/A //magnetic flux density (in Wb/m^2)\n",
"u=B/H //permeability (in H/m)\n",
"printf('permeability (in H/m )=')\n",
"disp(u)"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 8.5: calculate_magnetic_moment.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// chapter 8 , Example 8.5 , pg 239\n",
"B=0.65 //magnetic induction (in T)\n",
"d=8906 //density (in Kg/m^3)\n",
"M=58.7 //atomic weight\n",
"e=1.6*10^-19 //charge of electron (in C)\n",
"h=6.625*10^-34 //plancks constant (in m^2*Kg*S^-1)\n",
"m=9.11*10^-31 //mass of electron (in Kg)\n",
"Uo=4*%pi*10^-7 //vacuum permeability\n",
"Na=6.023*10^26 //Avogadro constant\n",
"Ub=(e*h)/(4*%pi*m) //Bhor magneton (in A*m^2)\n",
"N=(d*Na)/M //number of atoms per unit volume\n",
"Ur=B/(N*Uo) //relative permeability (in A/m^2)\n",
"M=Ur/(Ub) //magnetic moment\n",
"printf('Magnetic moment')\n",
"printf('M=%.2f A*m^2',M)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Scilab",
"language": "scilab",
"name": "scilab"
},
"language_info": {
"file_extension": ".sce",
"help_links": [
{
"text": "MetaKernel Magics",
"url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
}
],
"mimetype": "text/x-octave",
"name": "scilab",
"version": "0.7.1"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|