{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 8: Magnetic materials" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 8.1: Determine_magnitude_and_direction_of_magnetic_moment.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// chapter 8 , Example 8.1 , pg 238\n", "I=12 // current(in A)\n", "A=7.5*10^-4 //area(in m^2)\n", "M=I*A //magnetic moment associated with the loop\n", "printf('Magnetic moment associated with the loop(in A m^2)=')\n", "disp(M)\n", "printf('M is directed away from the observer and is perpendicular to the plane of the loop')" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 8.2: Determine_magnetic_moment.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// chapter 8 , Example 8.2 , pg 238\n", "r=0.5*10^-10 //radius of orbit (in m)\n", "e= 1.6*10^-19 //charge on electron (in C)\n", "n=10^16 //frequency of revolution of electron (in rps)\n", "I=e*n //current (in A)\n", "A=%pi *r^2 //area (in m^2)\n", "M=I*A //magnetic moment associated with motion of electron \n", "printf('Magnetic moment associated with motion of electron (in A m^2)')\n", "disp(M)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 8.3: calculate_magnetic_susceptibility.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// chapter 8 , Example 8.3 , pg 239\n", "ur=5000 //relative permeability\n", "xm=ur-1 //magnetic susceptibility\n", "printf('Magnetic susceptibility=')\n", "disp(xm)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 8.4: calculate_permeability.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// chapter 8 , Example 8.4 , pg 239\n", "H=1800 //magnetizing field (in A/m)\n", "phi=3*10^-5 //magnetic flux (in Wb)\n", "A=0.2 *10^-4 //area (in m^2)\n", "B=phi/A //magnetic flux density (in Wb/m^2)\n", "u=B/H //permeability (in H/m)\n", "printf('permeability (in H/m )=')\n", "disp(u)" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 8.5: calculate_magnetic_moment.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// chapter 8 , Example 8.5 , pg 239\n", "B=0.65 //magnetic induction (in T)\n", "d=8906 //density (in Kg/m^3)\n", "M=58.7 //atomic weight\n", "e=1.6*10^-19 //charge of electron (in C)\n", "h=6.625*10^-34 //plancks constant (in m^2*Kg*S^-1)\n", "m=9.11*10^-31 //mass of electron (in Kg)\n", "Uo=4*%pi*10^-7 //vacuum permeability\n", "Na=6.023*10^26 //Avogadro constant\n", "Ub=(e*h)/(4*%pi*m) //Bhor magneton (in A*m^2)\n", "N=(d*Na)/M //number of atoms per unit volume\n", "Ur=B/(N*Uo) //relative permeability (in A/m^2)\n", "M=Ur/(Ub) //magnetic moment\n", "printf('Magnetic moment')\n", "printf('M=%.2f A*m^2',M)" ] } ], "metadata": { "kernelspec": { "display_name": "Scilab", "language": "scilab", "name": "scilab" }, "language_info": { "file_extension": ".sce", "help_links": [ { "text": "MetaKernel Magics", "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" } ], "mimetype": "text/x-octave", "name": "scilab", "version": "0.7.1" } }, "nbformat": 4, "nbformat_minor": 0 }