1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chapter 9: Nuclear Physics"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 9.1_1: Binding_energy_per_nucleon_for_Ni.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// Scilab Code Ex9.1.1:Page-411 (2008)\n",
"clc; clear;\n",
"u = 931.508; // Energy equivalent of 1 amu, MeV\n",
"Z = 28; // Atomic number of ni-64\n",
"A = 64; // Mass number of Ni-64\n",
"m_p = 1.007825; // Mass of a proton, u\n",
"m_n = 1.008665; // Mass of a neutron, u\n",
"M_Ni = 63.9280; // Atomic mass of Ni-64 nucleus, u\n",
"delta_m = Z*m_p + (A-Z)*m_n - M_Ni; // Mass difference, u\n",
"BE = delta_m*u; // Binding energy of Ni-64 nucleus, MeV\n",
"BE_bar = BE/A; // Binding energy per nucleon of Ni-64 nucleus, MeV\n",
"printf('\nThe binding energy per nucleon for Ni-64 nucleus = %4.2f MeV/nucleon', BE_bar);\n",
"// Result \n",
"// The binding energy per nucleon for Ni-64 nucleus = 8.78 MeV/nucleon "
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 9.1_2: Binding_energy_per_nucleon_for_deutron.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// Scilab Code Ex9.1.2:Page-411 (2008)\n",
"clc; clear;\n",
"e = 1.6e-013; // Energy equivalent of 1 MeV, J\n",
"m_p = 1.672e-027; // Mass of a proton, kg\n",
"m_n = 1.675e-027; // Mass of a neutron, kg\n",
"M_D = 3.343e-027; // Mass of a deutron, kg\n",
"c = 3.00e+008; // Speed of light in vacuum, m/s\n",
"delta_m = m_p + m_n - M_D; // Mass defect, kg\n",
"E_B = delta_m*c^2/e; // Binding energy for the deutron, MeV\n",
"BE_bar = E_B/2; // Binding energy per nucleon for the deutron, MeV\n",
"printf('\nThe binding energy per nucleon for the deutron = %5.3f MeV/nucleon', BE_bar);\n",
"// Result \n",
"// The binding energy per nucleon for the deutron = 1.125 MeV/nucleon "
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 9.1_3: Packing_fraction_and_binding_energy_per_nucleon_for_oxygen.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// Scilab Code Ex9.1.3:Page-411 (2008)\n",
"clc; clear;\n",
"u = 931.508; // Energy equivalent of 1 amu, MeV\n",
"Z = 8; // Atomic number of O-16\n",
"A = 16; // Mass number of O-16\n",
"m_p = 1.008142; // Mass of a proton, u\n",
"m_n = 1.008982; // Mass of a neutron, u\n",
"M_O = 15.994915; // Atomic mass of O-16 nucleus, u\n",
"delta_m = Z*m_p + (A-Z)*m_n - M_O; // Mass difference, u\n",
"BE = delta_m*u; // Binding energy of O-16 nucleus, MeV\n",
"BE_bar = BE/A; // Binding energy per nucleon of O-16 nucleus, MeV\n",
"delta_m = abs(M_O - A); // Mass difference, u\n",
"PF = delta_m/A; // Packing fraction for O-16 nucleus, u\n",
"printf('\nThe binding energy per nucleon for O-16 nucleus = %4.2f MeV/nucleon', BE_bar);\n",
"printf('\nThe packing fraction for O-16 nucleus = %5.3e u', PF);\n",
"// Result \n",
"// The binding energy per nucleon for O-16 nucleus = 8.27 MeV/nucleon\n",
"// The packing fraction for O-16 nucleus = 3.178e-004 u "
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 9.1_4: Atomic_mass_of_neon.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// Scilab Code Ex9.1.4: Page-411 (2008)\n",
"clc; clear;\n",
"u = 931.508; // Energy equivalent of 1 amu, MeV\n",
"Z = 10; // Atomic number of Ne-20\n",
"A = 20; // Mass number of Ne-0\n",
"m_p = 1.007825; // Mass of a proton, u\n",
"m_n = 1.008665; // Mass of a neutron, u\n",
"BE = 160.64; // Binding energy of Ne-20 nucleus, MeV\n",
"M = Z*m_p + (A-Z)*m_n + Z*0.51/u - BE/u; // Atomic mass of Ne-20 nucleus, u\n",
"printf('\nThe atomic mass of Ne = %7.4f a.m.u', M);\n",
"// Result \n",
"// The atomic mass of Ne = 19.9979 a.m.u "
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 9.2_11: Q_value_of_nuclear_reaction.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// Scilab Code Ex9.2.11: Page-418(2008)\n",
"clc; clear;\n",
"u = 931.5; // Energy equivalent of 1 amu, MeV\n",
"m_x = 4.002603; // Mass of projectile (alpha-particle), u\n",
"m_y = 1.007825; // Mass of emitted particle (proton), u\n",
"M_X = 14.0031; // Mass of target nucleus (N-14), u\n",
"M_Y = 16.9994; // Mass of daughter nucleus (O-16), u\n",
"Q = ((m_x + M_X) - (m_y + M_Y))*u; // Q-value of the reaction, MeV\n",
"printf('\nThe Q-value of the nuclear reaction = %5.3f MeV', Q);\n",
"// Result \n",
"// The Q-value of the nuclear reaction = -1.418 MeV "
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 9.2_12: Threshold_energy_for_the_reactions.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// Scilab Code Ex9.2.12: Page-418(2008)\n",
"clc; clear;\n",
"u = 931.5; // Energy equivalent of 1 amu, MeV\n",
"// First reaction\n",
"m_x = 1.007825; // Mass of projectile (proton), u\n",
"m_y = 2.014102; // Mass of emitted particle (deutron), u\n",
"M_X = 208.980394; // Mass of target nucleus (Bi-209), u\n",
"M_Y = 207.979731; // Mass of daughter nucleus (Bi-208), u\n",
"Q = ((m_x + M_X) - (m_y + M_Y))*u; // Q-value of the reaction, MeV\n",
"Ex_threshold = -Q*(m_x + M_X)/M_X; // The smallest value of the projectile energy, MeV\n",
"printf('\nThe threshhold energy of the reaction Bi(209,83) + p --> Bi(208,83) + d = %4.2f MeV', Ex_threshold);\n",
"// Second reaction\n",
"m_x = 4.002603; // Mass of projectile (alpha-particle), u\n",
"m_y = 1.007825; // Mass of emitted particle (proton), u\n",
"M_X = 27.98210; // Mass of target nucleus (Al-27), u\n",
"M_Y = 30.973765; // Mass of daughter nucleus (P-31), u\n",
"Q = ((m_x + M_X) - (m_y + M_Y))*u; // Q-value of the reaction, MeV\n",
"Ex_threshold = -Q*(m_x + M_X)/M_X; // The smallest value of the projectile energy, MeV\n",
"printf('\nThe threshhold energy of the reaction Al(27,13) + He --> P(31,15) + p = %4.2f MeV', Ex_threshold);\n",
"// Result \n",
"// The threshhold energy of the reaction Bi(209,83) + p --> Bi(208,83) + d = 5.25 MeV\n",
"// The threshhold energy of the reaction Al(27,13) + He --> P(31,15) + p = -3.31 MeV "
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 9.2_13: Finding_unknown_particles_in_the_nuclear_reactions.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// Scilab Code Ex9.2.13: Page-418(2008)\n",
"clc; clear;\n",
"function p = Find(Z, A)\n",
" if Z == 2 & A == 4 then\n",
" p = 'alpha';\n",
" end\n",
" if Z == -1 & A == 0 then\n",
" p = 'beta-';\n",
" end\n",
" if Z == 1 & A == 0 then\n",
" p = 'beta+';\n",
" end\n",
"endfunction \n",
"R1 = cell(4,3);\n",
"R2 = cell(4,3);\n",
"// Enter data for first cell (Reaction)\n",
"R1(1,1).entries = 'Li'; // Element\n",
"R1(1,2).entries = 3; // Atomic number\n",
"R1(1,3).entries = 6; // Mass number\n",
"R1(2,1).entries = 'd';\n",
"R1(2,2).entries = 1;\n",
"R1(2,3).entries = 2;\n",
"R1(3,1).entries = 'X';\n",
"R1(3,2).entries = 0;\n",
"R1(3,3).entries = 0;\n",
"R1(4,1).entries = 'He';\n",
"R1(4,2).entries = 2;\n",
"R1(4,3).entries = 4;\n",
"// Enter data for second cell (Reaction)\n",
"R2(1,1).entries = 'Te';\n",
"R2(1,2).entries = 52;\n",
"R2(1,3).entries = 122;\n",
"R2(2,1).entries = 'X';\n",
"R2(2,2).entries = 0;\n",
"R2(2,3).entries = 0;\n",
"R2(3,1).entries = 'I';\n",
"R2(3,2).entries = 53;\n",
"R2(3,3).entries = 124;\n",
"R2(4,1).entries = 'd';\n",
"R2(4,2).entries = 1;\n",
"R2(4,3).entries = 2;\n",
"R1(3,2).entries = R1(1,2).entries+R1(2,2).entries-R1(4,2).entries\n",
"R1(3,3).entries = R1(1,3).entries+R1(2,3).entries-R1(4,3).entries\n",
"particle = Find(R1(3,2).entries, R1(3,3).entries); // Find the unknown particle\n",
"printf('\nFor the reaction\n')\n",
" printf('\t%s(%d) + %s(%d) --> %s + %s(%d)\n X must be an %s particle', R1(1,1).entries, R1(1,3).entries, R1(2,1).entries, R1(2,3).entries, R1(3,1).entries, R1(4,1).entries, R1(4,3).entries, particle);\n",
"R2(2,2).entries = R2(3,2).entries+R2(4,2).entries-R2(1,2).entries\n",
"R2(2,3).entries = R2(3,3).entries+R2(4,3).entries-R2(1,3).entries\n",
"particle = Find(R2(2,2).entries, R2(2,3).entries); // Find the unknown particle\n",
"printf('\n\nFor the reaction\n')\n",
" printf('\t%s(%d) + %s --> %s(%d)+%s(%d)\n X must be an %s particle', R2(1,1).entries, R2(1,3).entries, R2(2,1).entries, R2(3,1).entries, R2(3,3).entries, R2(4,1).entries, R2(4,3).entries, particle);\n",
" \n",
"// Result\n",
"// For the reaction\n",
"// Li(6) + d(2) --> X + He(4)\n",
"// X must be an alpha particle\n",
"// For the reaction\n",
"// Te(122) + X --> I(124)+d(2)\n",
"// X must be an alpha particle "
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 9.2_14: Comptom_scattering.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// Scilab Code Ex9.2.14: Page-419(2008)\n",
"clc; clear;\n",
"h = 6.63e-034; // Planck's constant, Js\n",
"c = 3e+008; // Speed of light, m/s\n",
"lambda = 10e-012; // Wavelength of incident X-rays, m\n",
"lambda_c = 2.426e-012; // Compton wavelength for the electron, m\n",
"phi = 45; // Angle of scattering of X-rays, degree\n",
"lambda_prime = lambda + lambda_c*(1 - cosd(phi)); // Wavelength of scattered X-rays, m\n",
"// For maximum wavelength\n",
"phi = 180; // Angle for maximum scattering, degree\n",
"lambda_prime_max = lambda + lambda_c*(1 - cosd(phi)) ; // Maximum wavelength present in the scattered X-rays, m\n",
"KE_max = h*c*(1/lambda-1/lambda_prime_max); // Maximum kinetic energy of the recoil electrons, J\n",
"printf('\nThe wavelength of scattered X-rays = %5.2e m', lambda_prime);\n",
"printf('\nThe maximum wavelength present in the scattered X-rays = %6.3f pm', lambda_prime_max/1e-012);\n",
"printf('\nThe maximum kinetic energy of the recoil electrons = %5.3e J', KE_max);\n",
"// Result\n",
"// The wavelength of scattered X-rays = 1.07e-011 m\n",
"// The maximum wavelength present in the scattered X-rays = 14.852 pm\n",
"// The maximum kinetic energy of the recoil electrons = 6.498e-015 J "
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 9.2_16: Miller_indices_for_the_lattice_planes.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// Scilab Code Ex9.2.16: Page-420(2008)\n",
"clc; clear;\n",
"m = 3; n = 3; p = 2; // Coefficients of intercepts along three axes\n",
"m_inv = 1/m; // Reciprocate the first coefficient\n",
"n_inv = 1/n; // Reciprocate the second coefficient\n",
"p_inv = 1/p; // Reciprocate the third coefficient\n",
"mul_fact = double(lcm(int32([m,n,p]))); // Find l.c.m. of m,n and p\n",
"m1 = m_inv*mul_fact; // Clear the first fraction\n",
"m2 = n_inv*mul_fact; // Clear the second fraction\n",
"m3 = p_inv*mul_fact; // Clear the third fraction\n",
"printf('\nThe miller indices for planes with set of intercepts (%da, %db, %dc) are (%d %d %d) ', m, n, p, m1, m2, m3);\n",
"m = 1; n = 2; p = %inf; // Coefficients of intercepts along three axes\n",
"m_inv = 1/m; // Reciprocate the first coefficient\n",
"n_inv = 1/n; // Reciprocate the second coefficient\n",
"p_inv = 1/p; // Reciprocate the third coefficient\n",
"mul_fact = double(lcm(int32([m,n]))); // Find l.c.m. of m,n and p\n",
"m1 = m_inv*mul_fact; // Clear the first fraction\n",
"m2 = n_inv*mul_fact; // Clear the second fraction\n",
"m3 = p_inv*mul_fact; // Clear the third fraction\n",
"printf('\nThe miller indices for planes with set of intercepts (%da, %db, %dc) are (%d %d %d) ', m, n, p, m1, m2, m3);\n",
"// Result\n",
"// The miller indices for planes with set of intercepts (3a, 3b, 2c) are (2 2 3) \n",
"// The miller indices for planes with set of intercepts (1a, 2b, Infc) are (2 1 0) "
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 9.2_19: Glancing_angles_for_the_second_and_third_order_reflections.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// Scilab Code Ex9.2.19: Page-421(2008)\n",
"clc; clear;\n",
"d = 1; // For simplicity assume interplanar spacing to be unity, m\n",
"theta = 15; // Glancing angle for first order, degree\n",
"n = 1; // Order of reflection\n",
"// From Bragg's law, 2*d*sind(theta) = n*lambda, solving for lambda\n",
"lambda = 2*d*sind(theta)/n; // Wavelength of incident X-ray, angstrom\n",
"// For second order reflection\n",
"n = 2\n",
"theta = asind(n*lambda/(2*d)); // Glancing angle for second order reflection, degree\n",
"printf('\nThe glancing angle for the second order reflection = %4.1f degree', theta);\n",
"// For third order reflection\n",
"n = 3;\n",
"theta = asind(n*lambda/(2*d)); // Glancing angle for third order reflection, degree\n",
"printf('\nThe glancing angle for the third order reflection = %4.1f degree', theta);\n",
"// Result\n",
"// The glancing angle for the second order reflection = 31.2 degree\n",
"// The glancing angle for the third order reflection = 50.9 degree "
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 9.2_1: Average_number_of_photons_pe_cubic_metre_in_a_monochromatic_beam.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// Scilab Code Ex9.2.1: Page-414 (2008)\n",
"clc; clear;\n",
"h = 6.63e-034; // Planck's constant, Js\n",
"c = 3.00e+008; // Speed of light in vacuum, m/s\n",
"I = 1e+004; // Intensity of monochromatic beam, W/Sq.m\n",
"nu = 1e+004; // Frequency of monochromatic beam, Hz\n",
"n = I/(h*nu*c); // Average number of photons per cubic metre, photons/metre-cube\n",
"printf('\nThe average number of photons in the monochromatic beam of radiation = %4.2e photons/metre-cube', n);\n",
"// Result \n",
"// The average number of photons in the monochromatic beam of radiation = 5.03e+024 photons/metre-cube "
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 9.2_2: Average_number_of_photons_pe_cubic_metre_in_a_monochromatic_beam.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// Scilab Code Ex9.2.2: : Page-414 (2008)\n",
"clc; clear;\n",
"h = 6.63e-034; // Planck's constant, Js\n",
"c = 3.00e+008; // Speed of light in vacuum, m/s\n",
"I = 1e+004; // Intensity of monochromatic beam, W/Sq.m\n",
"nu = 1e+004; // Frequency of monochromatic beam, Hz\n",
"n = I/(h*nu*c); // Average number of photons per cubic metre, photons/metre-cube\n",
"printf('\nThe average number of photons in the monochromatic beam of radiation = %4.2e photons/metre-cube', n);\n",
"// Result \n",
"// The average number of photons in the monochromatic beam of radiation = 5.03e+024 photons/metre-cube "
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 9.2_3: Photoelectric_effect_with_silver.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// Scilab Code Ex9.2.3: Page-414 (2008)\n",
"clc; clear;\n",
"h = 6.63e-034; // Planck's constant, Js\n",
"c = 3.00e+008; // Speed of light in vacuum, m/s\n",
"e = 1.6e-019; // Energy equivalent of 1 eV, J\n",
"m_e = 9.1e-031; // Rest mass of an electron, kg\n",
"lambda0 = 2762e-010; // Thereshold wavelength of silver, m\n",
"lambda = 2000e-010; // Wavelength of ultraviolet rays, m\n",
"E_max = h*c*(1/lambda - 1/lambda0); // Maximum kinetic energy of the ejected electrons from Einstein's photoelectric equation, J\n",
"// As E_max = 1/2*m_e*v^2, solving for v\n",
"v_max = sqrt(2*E_max/m_e); // Maximum velocity of the photoelectrons, m/s\n",
"V0 = E_max/e; // Stopping potential for the electrons, V\n",
"printf('\nThe maximum kinetic energy of the ejected electrons = %5.3e J', E_max);\n",
"printf('\nThe maximum velocity of the photoelectrons = %4.2e m/s', v_max);\n",
"printf('\nThe stopping potential for the electrons = %5.3f V', V0);\n",
"// Result \n",
"// The maximum kinetic energy of the ejected electrons = 2.744e-019 J\n",
"// The maximum velocity of the photoelectrons = 7.77e+005 m/s\n",
"// The stopping potential for the electrons = 1.715 V "
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 9.2_4: Work_function_of_the_metallic_surface.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// Scilab Code Ex9.2.4: Page-415 (2008)\n",
"clc; clear;\n",
"lambda1 = 3333e-010; // First wavelength of the incident light, m\n",
"lambda2 = 2400e-010; // Second wavelength of the incident light, m\n",
"c = 3e+008; // Speed of light in free space, m/s\n",
"e = 1.6e-019; // Energy equivalent of 1 eV, J\n",
"E1 = 0.6; // Kinetic energy of the emitted photoelectrons for the first wavelength, eV\n",
"E2 = 2.04; // Kinetic energy of the emitted photoelectrons for the second wavelength, eV\n",
"h = (E2 - E1)*lambda1*lambda2*e/(c*(lambda1 - lambda2)); // Planck's constant, Js\n",
"W0 = (E2*lambda2 - E1*lambda1)/(lambda1 - lambda2); // Work function of the metal, eV\n",
"printf('\nThe value of Planck constant = %3.1e Js', h);\n",
"printf('\nThe work function of the metal = %3.1f eV', W0);\n",
"// Result \n",
"// The value of Planck constant = 6.6e-034 Js\n",
"// The work function of the metal = 3.1 eV "
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 9.2_5: Wavelength_of_the_scattered_photon.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// Scilab Code Ex9.2.5: Page-415 (2008)\n",
"clc; clear;\n",
"c = 3e+008; // Speed of light in free space, m/s\n",
"h = 6.63e-034; // Planck's constant, Js\n",
"m_e = 9.11e-031; // Rest mass of an electron, kg\n",
"lambda = 0.3; // Wavelength of incident X-ray photon, angstrom\n",
"phi = 45; // The angle of scattering, degrees\n",
"lambda_prime = lambda + h/(m_e*c*1e-010)*(1-cosd(phi)); // The wavelength of the scattered photon, angstrom\n",
"printf('\nThe wavelength of the scattered photon = %6.4f angstrom', lambda_prime);\n",
"// Result \n",
"// The wavelength of the scattered photon = 0.3071 angstrom "
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 9.2_6: de_Broglie_wavelength_of_the_valence_electron_in_metallic_sodium.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// Scilab Code Ex9.2.6: Page-416 (2008)\n",
"clc; clear;\n",
"h = 6.63e-034; // Planck's constant, Js\n",
"m_e = 9.11e-031; // Rest mass of an electron, kg\n",
"e = 1.6e-019; // Energy equivalent of 1 eV, J\n",
"K = 3*e; // Kinetic energy of the electron in metllic sodium, J\n",
"lambda = h/sqrt(2*m_e*K)/1e-010; // de Broglie wavelength of the valence electron, angstrom\n",
"printf('\nThe de-Broglie wavelength of the valence electron = %3.1f angstrom', lambda);\n",
"// Result \n",
"// The de-Broglie wavelength of the valence electron = 7.1 angstrom "
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 9.2_7: de_Broglie_wavelength_of_a_moving_electron.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// Scilab Code Ex9.2.7: Page-416 (2008)\n",
"clc; clear;\n",
"h = 6.63e-034; // Planck's constant, Js\n",
"m = 9.11e-031; // Rest mass of an electron, kg\n",
"c = 3e+008; // Speed of light in vacuum, m/s\n",
"bita = 3/5; // Boost parameter\n",
"v = 3/5*c; // Spped of the electron, m/s\n",
"lambda = h/(m*v)*sqrt(1-bita^2); // de Broglie wavelength of the electron, m\n",
"printf('\nThe de-Broglie wavelength of the moving electron = %6.4f angstrom', lambda/1e-010);\n",
"// Result \n",
"// The de-Broglie wavelength of the moving electron = 0.0323 angstrom "
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 9.2_8: Uncertainty_in_energy_and_frequency_of_emitted_light.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// Scilab Code Ex9.2.8: Page-416 (2008)\n",
"clc; clear;\n",
"h = 6.63e-034; // Planck's constant, Js\n",
"h_bar = h/(2*%pi); // Reduced Planck's constant, Js\n",
"delta_t = 1e-008; // Time during which the radiation is emitted, s\n",
"delta_E = h_bar/delta_t; // Minimum uncertainty in energy of emitted light, J\n",
"// As delta_E = h*delta_nu from Planck's quantum theory, solving for delta_nu\n",
"delta_nu = delta_E/h; // Minimum uncertainty in frequency of emitted light, Hz\n",
"printf('\nThe minimum uncertainty in energy of emitted light = %5.3e J', delta_E);\n",
"printf('\nThe minimum uncertainty in frequency of emitted light = %4.2e Hz', delta_nu);\n",
"// Result \n",
"// The minimum uncertainty in energy of emitted ligh = 1.055e-026 J\n",
"// The minimum uncertainty in frequency of emitted ligh = 1.59e+007 Hz "
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 9.2_9: Shortest_wavelength_present_in_the_radiation_from_an_X_ray_machine.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// Scilab Code Ex9.2.9: Page-417 (2008)\n",
"clc; clear;\n",
"h = 6.63e-034; // Planck's constant, Js\n",
"c = 3e+008; // Speed of light in free space, m/s\n",
"e = 1.6e-019; // Energy equivalent of 1 eV, J\n",
"V = 50000; // Accelerating potential, V\n",
"lambda_min = h*c/(e*V); // The shortest wavelength present in the radiation from an X-ray machine, m\n",
"printf('\nThe shortest wavelength present in the radiation from an X-ray machine = %6.4f nm', lambda_min/1e-009);\n",
"// Result \n",
"// The shortest wavelength present in the radiation from an X-ray machine = 0.0249 nm "
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Scilab",
"language": "scilab",
"name": "scilab"
},
"language_info": {
"file_extension": ".sce",
"help_links": [
{
"text": "MetaKernel Magics",
"url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
}
],
"mimetype": "text/x-octave",
"name": "scilab",
"version": "0.7.1"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|