{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 9: Nuclear Physics" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 9.1_1: Binding_energy_per_nucleon_for_Ni.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Scilab Code Ex9.1.1:Page-411 (2008)\n", "clc; clear;\n", "u = 931.508; // Energy equivalent of 1 amu, MeV\n", "Z = 28; // Atomic number of ni-64\n", "A = 64; // Mass number of Ni-64\n", "m_p = 1.007825; // Mass of a proton, u\n", "m_n = 1.008665; // Mass of a neutron, u\n", "M_Ni = 63.9280; // Atomic mass of Ni-64 nucleus, u\n", "delta_m = Z*m_p + (A-Z)*m_n - M_Ni; // Mass difference, u\n", "BE = delta_m*u; // Binding energy of Ni-64 nucleus, MeV\n", "BE_bar = BE/A; // Binding energy per nucleon of Ni-64 nucleus, MeV\n", "printf('\nThe binding energy per nucleon for Ni-64 nucleus = %4.2f MeV/nucleon', BE_bar);\n", "// Result \n", "// The binding energy per nucleon for Ni-64 nucleus = 8.78 MeV/nucleon " ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 9.1_2: Binding_energy_per_nucleon_for_deutron.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Scilab Code Ex9.1.2:Page-411 (2008)\n", "clc; clear;\n", "e = 1.6e-013; // Energy equivalent of 1 MeV, J\n", "m_p = 1.672e-027; // Mass of a proton, kg\n", "m_n = 1.675e-027; // Mass of a neutron, kg\n", "M_D = 3.343e-027; // Mass of a deutron, kg\n", "c = 3.00e+008; // Speed of light in vacuum, m/s\n", "delta_m = m_p + m_n - M_D; // Mass defect, kg\n", "E_B = delta_m*c^2/e; // Binding energy for the deutron, MeV\n", "BE_bar = E_B/2; // Binding energy per nucleon for the deutron, MeV\n", "printf('\nThe binding energy per nucleon for the deutron = %5.3f MeV/nucleon', BE_bar);\n", "// Result \n", "// The binding energy per nucleon for the deutron = 1.125 MeV/nucleon " ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 9.1_3: Packing_fraction_and_binding_energy_per_nucleon_for_oxygen.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Scilab Code Ex9.1.3:Page-411 (2008)\n", "clc; clear;\n", "u = 931.508; // Energy equivalent of 1 amu, MeV\n", "Z = 8; // Atomic number of O-16\n", "A = 16; // Mass number of O-16\n", "m_p = 1.008142; // Mass of a proton, u\n", "m_n = 1.008982; // Mass of a neutron, u\n", "M_O = 15.994915; // Atomic mass of O-16 nucleus, u\n", "delta_m = Z*m_p + (A-Z)*m_n - M_O; // Mass difference, u\n", "BE = delta_m*u; // Binding energy of O-16 nucleus, MeV\n", "BE_bar = BE/A; // Binding energy per nucleon of O-16 nucleus, MeV\n", "delta_m = abs(M_O - A); // Mass difference, u\n", "PF = delta_m/A; // Packing fraction for O-16 nucleus, u\n", "printf('\nThe binding energy per nucleon for O-16 nucleus = %4.2f MeV/nucleon', BE_bar);\n", "printf('\nThe packing fraction for O-16 nucleus = %5.3e u', PF);\n", "// Result \n", "// The binding energy per nucleon for O-16 nucleus = 8.27 MeV/nucleon\n", "// The packing fraction for O-16 nucleus = 3.178e-004 u " ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 9.1_4: Atomic_mass_of_neon.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Scilab Code Ex9.1.4: Page-411 (2008)\n", "clc; clear;\n", "u = 931.508; // Energy equivalent of 1 amu, MeV\n", "Z = 10; // Atomic number of Ne-20\n", "A = 20; // Mass number of Ne-0\n", "m_p = 1.007825; // Mass of a proton, u\n", "m_n = 1.008665; // Mass of a neutron, u\n", "BE = 160.64; // Binding energy of Ne-20 nucleus, MeV\n", "M = Z*m_p + (A-Z)*m_n + Z*0.51/u - BE/u; // Atomic mass of Ne-20 nucleus, u\n", "printf('\nThe atomic mass of Ne = %7.4f a.m.u', M);\n", "// Result \n", "// The atomic mass of Ne = 19.9979 a.m.u " ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 9.2_11: Q_value_of_nuclear_reaction.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Scilab Code Ex9.2.11: Page-418(2008)\n", "clc; clear;\n", "u = 931.5; // Energy equivalent of 1 amu, MeV\n", "m_x = 4.002603; // Mass of projectile (alpha-particle), u\n", "m_y = 1.007825; // Mass of emitted particle (proton), u\n", "M_X = 14.0031; // Mass of target nucleus (N-14), u\n", "M_Y = 16.9994; // Mass of daughter nucleus (O-16), u\n", "Q = ((m_x + M_X) - (m_y + M_Y))*u; // Q-value of the reaction, MeV\n", "printf('\nThe Q-value of the nuclear reaction = %5.3f MeV', Q);\n", "// Result \n", "// The Q-value of the nuclear reaction = -1.418 MeV " ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 9.2_12: Threshold_energy_for_the_reactions.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Scilab Code Ex9.2.12: Page-418(2008)\n", "clc; clear;\n", "u = 931.5; // Energy equivalent of 1 amu, MeV\n", "// First reaction\n", "m_x = 1.007825; // Mass of projectile (proton), u\n", "m_y = 2.014102; // Mass of emitted particle (deutron), u\n", "M_X = 208.980394; // Mass of target nucleus (Bi-209), u\n", "M_Y = 207.979731; // Mass of daughter nucleus (Bi-208), u\n", "Q = ((m_x + M_X) - (m_y + M_Y))*u; // Q-value of the reaction, MeV\n", "Ex_threshold = -Q*(m_x + M_X)/M_X; // The smallest value of the projectile energy, MeV\n", "printf('\nThe threshhold energy of the reaction Bi(209,83) + p --> Bi(208,83) + d = %4.2f MeV', Ex_threshold);\n", "// Second reaction\n", "m_x = 4.002603; // Mass of projectile (alpha-particle), u\n", "m_y = 1.007825; // Mass of emitted particle (proton), u\n", "M_X = 27.98210; // Mass of target nucleus (Al-27), u\n", "M_Y = 30.973765; // Mass of daughter nucleus (P-31), u\n", "Q = ((m_x + M_X) - (m_y + M_Y))*u; // Q-value of the reaction, MeV\n", "Ex_threshold = -Q*(m_x + M_X)/M_X; // The smallest value of the projectile energy, MeV\n", "printf('\nThe threshhold energy of the reaction Al(27,13) + He --> P(31,15) + p = %4.2f MeV', Ex_threshold);\n", "// Result \n", "// The threshhold energy of the reaction Bi(209,83) + p --> Bi(208,83) + d = 5.25 MeV\n", "// The threshhold energy of the reaction Al(27,13) + He --> P(31,15) + p = -3.31 MeV " ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 9.2_13: Finding_unknown_particles_in_the_nuclear_reactions.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Scilab Code Ex9.2.13: Page-418(2008)\n", "clc; clear;\n", "function p = Find(Z, A)\n", " if Z == 2 & A == 4 then\n", " p = 'alpha';\n", " end\n", " if Z == -1 & A == 0 then\n", " p = 'beta-';\n", " end\n", " if Z == 1 & A == 0 then\n", " p = 'beta+';\n", " end\n", "endfunction \n", "R1 = cell(4,3);\n", "R2 = cell(4,3);\n", "// Enter data for first cell (Reaction)\n", "R1(1,1).entries = 'Li'; // Element\n", "R1(1,2).entries = 3; // Atomic number\n", "R1(1,3).entries = 6; // Mass number\n", "R1(2,1).entries = 'd';\n", "R1(2,2).entries = 1;\n", "R1(2,3).entries = 2;\n", "R1(3,1).entries = 'X';\n", "R1(3,2).entries = 0;\n", "R1(3,3).entries = 0;\n", "R1(4,1).entries = 'He';\n", "R1(4,2).entries = 2;\n", "R1(4,3).entries = 4;\n", "// Enter data for second cell (Reaction)\n", "R2(1,1).entries = 'Te';\n", "R2(1,2).entries = 52;\n", "R2(1,3).entries = 122;\n", "R2(2,1).entries = 'X';\n", "R2(2,2).entries = 0;\n", "R2(2,3).entries = 0;\n", "R2(3,1).entries = 'I';\n", "R2(3,2).entries = 53;\n", "R2(3,3).entries = 124;\n", "R2(4,1).entries = 'd';\n", "R2(4,2).entries = 1;\n", "R2(4,3).entries = 2;\n", "R1(3,2).entries = R1(1,2).entries+R1(2,2).entries-R1(4,2).entries\n", "R1(3,3).entries = R1(1,3).entries+R1(2,3).entries-R1(4,3).entries\n", "particle = Find(R1(3,2).entries, R1(3,3).entries); // Find the unknown particle\n", "printf('\nFor the reaction\n')\n", " printf('\t%s(%d) + %s(%d) --> %s + %s(%d)\n X must be an %s particle', R1(1,1).entries, R1(1,3).entries, R1(2,1).entries, R1(2,3).entries, R1(3,1).entries, R1(4,1).entries, R1(4,3).entries, particle);\n", "R2(2,2).entries = R2(3,2).entries+R2(4,2).entries-R2(1,2).entries\n", "R2(2,3).entries = R2(3,3).entries+R2(4,3).entries-R2(1,3).entries\n", "particle = Find(R2(2,2).entries, R2(2,3).entries); // Find the unknown particle\n", "printf('\n\nFor the reaction\n')\n", " printf('\t%s(%d) + %s --> %s(%d)+%s(%d)\n X must be an %s particle', R2(1,1).entries, R2(1,3).entries, R2(2,1).entries, R2(3,1).entries, R2(3,3).entries, R2(4,1).entries, R2(4,3).entries, particle);\n", " \n", "// Result\n", "// For the reaction\n", "// Li(6) + d(2) --> X + He(4)\n", "// X must be an alpha particle\n", "// For the reaction\n", "// Te(122) + X --> I(124)+d(2)\n", "// X must be an alpha particle " ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 9.2_14: Comptom_scattering.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Scilab Code Ex9.2.14: Page-419(2008)\n", "clc; clear;\n", "h = 6.63e-034; // Planck's constant, Js\n", "c = 3e+008; // Speed of light, m/s\n", "lambda = 10e-012; // Wavelength of incident X-rays, m\n", "lambda_c = 2.426e-012; // Compton wavelength for the electron, m\n", "phi = 45; // Angle of scattering of X-rays, degree\n", "lambda_prime = lambda + lambda_c*(1 - cosd(phi)); // Wavelength of scattered X-rays, m\n", "// For maximum wavelength\n", "phi = 180; // Angle for maximum scattering, degree\n", "lambda_prime_max = lambda + lambda_c*(1 - cosd(phi)) ; // Maximum wavelength present in the scattered X-rays, m\n", "KE_max = h*c*(1/lambda-1/lambda_prime_max); // Maximum kinetic energy of the recoil electrons, J\n", "printf('\nThe wavelength of scattered X-rays = %5.2e m', lambda_prime);\n", "printf('\nThe maximum wavelength present in the scattered X-rays = %6.3f pm', lambda_prime_max/1e-012);\n", "printf('\nThe maximum kinetic energy of the recoil electrons = %5.3e J', KE_max);\n", "// Result\n", "// The wavelength of scattered X-rays = 1.07e-011 m\n", "// The maximum wavelength present in the scattered X-rays = 14.852 pm\n", "// The maximum kinetic energy of the recoil electrons = 6.498e-015 J " ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 9.2_16: Miller_indices_for_the_lattice_planes.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Scilab Code Ex9.2.16: Page-420(2008)\n", "clc; clear;\n", "m = 3; n = 3; p = 2; // Coefficients of intercepts along three axes\n", "m_inv = 1/m; // Reciprocate the first coefficient\n", "n_inv = 1/n; // Reciprocate the second coefficient\n", "p_inv = 1/p; // Reciprocate the third coefficient\n", "mul_fact = double(lcm(int32([m,n,p]))); // Find l.c.m. of m,n and p\n", "m1 = m_inv*mul_fact; // Clear the first fraction\n", "m2 = n_inv*mul_fact; // Clear the second fraction\n", "m3 = p_inv*mul_fact; // Clear the third fraction\n", "printf('\nThe miller indices for planes with set of intercepts (%da, %db, %dc) are (%d %d %d) ', m, n, p, m1, m2, m3);\n", "m = 1; n = 2; p = %inf; // Coefficients of intercepts along three axes\n", "m_inv = 1/m; // Reciprocate the first coefficient\n", "n_inv = 1/n; // Reciprocate the second coefficient\n", "p_inv = 1/p; // Reciprocate the third coefficient\n", "mul_fact = double(lcm(int32([m,n]))); // Find l.c.m. of m,n and p\n", "m1 = m_inv*mul_fact; // Clear the first fraction\n", "m2 = n_inv*mul_fact; // Clear the second fraction\n", "m3 = p_inv*mul_fact; // Clear the third fraction\n", "printf('\nThe miller indices for planes with set of intercepts (%da, %db, %dc) are (%d %d %d) ', m, n, p, m1, m2, m3);\n", "// Result\n", "// The miller indices for planes with set of intercepts (3a, 3b, 2c) are (2 2 3) \n", "// The miller indices for planes with set of intercepts (1a, 2b, Infc) are (2 1 0) " ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 9.2_19: Glancing_angles_for_the_second_and_third_order_reflections.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Scilab Code Ex9.2.19: Page-421(2008)\n", "clc; clear;\n", "d = 1; // For simplicity assume interplanar spacing to be unity, m\n", "theta = 15; // Glancing angle for first order, degree\n", "n = 1; // Order of reflection\n", "// From Bragg's law, 2*d*sind(theta) = n*lambda, solving for lambda\n", "lambda = 2*d*sind(theta)/n; // Wavelength of incident X-ray, angstrom\n", "// For second order reflection\n", "n = 2\n", "theta = asind(n*lambda/(2*d)); // Glancing angle for second order reflection, degree\n", "printf('\nThe glancing angle for the second order reflection = %4.1f degree', theta);\n", "// For third order reflection\n", "n = 3;\n", "theta = asind(n*lambda/(2*d)); // Glancing angle for third order reflection, degree\n", "printf('\nThe glancing angle for the third order reflection = %4.1f degree', theta);\n", "// Result\n", "// The glancing angle for the second order reflection = 31.2 degree\n", "// The glancing angle for the third order reflection = 50.9 degree " ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 9.2_1: Average_number_of_photons_pe_cubic_metre_in_a_monochromatic_beam.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Scilab Code Ex9.2.1: Page-414 (2008)\n", "clc; clear;\n", "h = 6.63e-034; // Planck's constant, Js\n", "c = 3.00e+008; // Speed of light in vacuum, m/s\n", "I = 1e+004; // Intensity of monochromatic beam, W/Sq.m\n", "nu = 1e+004; // Frequency of monochromatic beam, Hz\n", "n = I/(h*nu*c); // Average number of photons per cubic metre, photons/metre-cube\n", "printf('\nThe average number of photons in the monochromatic beam of radiation = %4.2e photons/metre-cube', n);\n", "// Result \n", "// The average number of photons in the monochromatic beam of radiation = 5.03e+024 photons/metre-cube " ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 9.2_2: Average_number_of_photons_pe_cubic_metre_in_a_monochromatic_beam.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Scilab Code Ex9.2.2: : Page-414 (2008)\n", "clc; clear;\n", "h = 6.63e-034; // Planck's constant, Js\n", "c = 3.00e+008; // Speed of light in vacuum, m/s\n", "I = 1e+004; // Intensity of monochromatic beam, W/Sq.m\n", "nu = 1e+004; // Frequency of monochromatic beam, Hz\n", "n = I/(h*nu*c); // Average number of photons per cubic metre, photons/metre-cube\n", "printf('\nThe average number of photons in the monochromatic beam of radiation = %4.2e photons/metre-cube', n);\n", "// Result \n", "// The average number of photons in the monochromatic beam of radiation = 5.03e+024 photons/metre-cube " ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 9.2_3: Photoelectric_effect_with_silver.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Scilab Code Ex9.2.3: Page-414 (2008)\n", "clc; clear;\n", "h = 6.63e-034; // Planck's constant, Js\n", "c = 3.00e+008; // Speed of light in vacuum, m/s\n", "e = 1.6e-019; // Energy equivalent of 1 eV, J\n", "m_e = 9.1e-031; // Rest mass of an electron, kg\n", "lambda0 = 2762e-010; // Thereshold wavelength of silver, m\n", "lambda = 2000e-010; // Wavelength of ultraviolet rays, m\n", "E_max = h*c*(1/lambda - 1/lambda0); // Maximum kinetic energy of the ejected electrons from Einstein's photoelectric equation, J\n", "// As E_max = 1/2*m_e*v^2, solving for v\n", "v_max = sqrt(2*E_max/m_e); // Maximum velocity of the photoelectrons, m/s\n", "V0 = E_max/e; // Stopping potential for the electrons, V\n", "printf('\nThe maximum kinetic energy of the ejected electrons = %5.3e J', E_max);\n", "printf('\nThe maximum velocity of the photoelectrons = %4.2e m/s', v_max);\n", "printf('\nThe stopping potential for the electrons = %5.3f V', V0);\n", "// Result \n", "// The maximum kinetic energy of the ejected electrons = 2.744e-019 J\n", "// The maximum velocity of the photoelectrons = 7.77e+005 m/s\n", "// The stopping potential for the electrons = 1.715 V " ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 9.2_4: Work_function_of_the_metallic_surface.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Scilab Code Ex9.2.4: Page-415 (2008)\n", "clc; clear;\n", "lambda1 = 3333e-010; // First wavelength of the incident light, m\n", "lambda2 = 2400e-010; // Second wavelength of the incident light, m\n", "c = 3e+008; // Speed of light in free space, m/s\n", "e = 1.6e-019; // Energy equivalent of 1 eV, J\n", "E1 = 0.6; // Kinetic energy of the emitted photoelectrons for the first wavelength, eV\n", "E2 = 2.04; // Kinetic energy of the emitted photoelectrons for the second wavelength, eV\n", "h = (E2 - E1)*lambda1*lambda2*e/(c*(lambda1 - lambda2)); // Planck's constant, Js\n", "W0 = (E2*lambda2 - E1*lambda1)/(lambda1 - lambda2); // Work function of the metal, eV\n", "printf('\nThe value of Planck constant = %3.1e Js', h);\n", "printf('\nThe work function of the metal = %3.1f eV', W0);\n", "// Result \n", "// The value of Planck constant = 6.6e-034 Js\n", "// The work function of the metal = 3.1 eV " ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 9.2_5: Wavelength_of_the_scattered_photon.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Scilab Code Ex9.2.5: Page-415 (2008)\n", "clc; clear;\n", "c = 3e+008; // Speed of light in free space, m/s\n", "h = 6.63e-034; // Planck's constant, Js\n", "m_e = 9.11e-031; // Rest mass of an electron, kg\n", "lambda = 0.3; // Wavelength of incident X-ray photon, angstrom\n", "phi = 45; // The angle of scattering, degrees\n", "lambda_prime = lambda + h/(m_e*c*1e-010)*(1-cosd(phi)); // The wavelength of the scattered photon, angstrom\n", "printf('\nThe wavelength of the scattered photon = %6.4f angstrom', lambda_prime);\n", "// Result \n", "// The wavelength of the scattered photon = 0.3071 angstrom " ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 9.2_6: de_Broglie_wavelength_of_the_valence_electron_in_metallic_sodium.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Scilab Code Ex9.2.6: Page-416 (2008)\n", "clc; clear;\n", "h = 6.63e-034; // Planck's constant, Js\n", "m_e = 9.11e-031; // Rest mass of an electron, kg\n", "e = 1.6e-019; // Energy equivalent of 1 eV, J\n", "K = 3*e; // Kinetic energy of the electron in metllic sodium, J\n", "lambda = h/sqrt(2*m_e*K)/1e-010; // de Broglie wavelength of the valence electron, angstrom\n", "printf('\nThe de-Broglie wavelength of the valence electron = %3.1f angstrom', lambda);\n", "// Result \n", "// The de-Broglie wavelength of the valence electron = 7.1 angstrom " ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 9.2_7: de_Broglie_wavelength_of_a_moving_electron.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Scilab Code Ex9.2.7: Page-416 (2008)\n", "clc; clear;\n", "h = 6.63e-034; // Planck's constant, Js\n", "m = 9.11e-031; // Rest mass of an electron, kg\n", "c = 3e+008; // Speed of light in vacuum, m/s\n", "bita = 3/5; // Boost parameter\n", "v = 3/5*c; // Spped of the electron, m/s\n", "lambda = h/(m*v)*sqrt(1-bita^2); // de Broglie wavelength of the electron, m\n", "printf('\nThe de-Broglie wavelength of the moving electron = %6.4f angstrom', lambda/1e-010);\n", "// Result \n", "// The de-Broglie wavelength of the moving electron = 0.0323 angstrom " ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 9.2_8: Uncertainty_in_energy_and_frequency_of_emitted_light.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Scilab Code Ex9.2.8: Page-416 (2008)\n", "clc; clear;\n", "h = 6.63e-034; // Planck's constant, Js\n", "h_bar = h/(2*%pi); // Reduced Planck's constant, Js\n", "delta_t = 1e-008; // Time during which the radiation is emitted, s\n", "delta_E = h_bar/delta_t; // Minimum uncertainty in energy of emitted light, J\n", "// As delta_E = h*delta_nu from Planck's quantum theory, solving for delta_nu\n", "delta_nu = delta_E/h; // Minimum uncertainty in frequency of emitted light, Hz\n", "printf('\nThe minimum uncertainty in energy of emitted light = %5.3e J', delta_E);\n", "printf('\nThe minimum uncertainty in frequency of emitted light = %4.2e Hz', delta_nu);\n", "// Result \n", "// The minimum uncertainty in energy of emitted ligh = 1.055e-026 J\n", "// The minimum uncertainty in frequency of emitted ligh = 1.59e+007 Hz " ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 9.2_9: Shortest_wavelength_present_in_the_radiation_from_an_X_ray_machine.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Scilab Code Ex9.2.9: Page-417 (2008)\n", "clc; clear;\n", "h = 6.63e-034; // Planck's constant, Js\n", "c = 3e+008; // Speed of light in free space, m/s\n", "e = 1.6e-019; // Energy equivalent of 1 eV, J\n", "V = 50000; // Accelerating potential, V\n", "lambda_min = h*c/(e*V); // The shortest wavelength present in the radiation from an X-ray machine, m\n", "printf('\nThe shortest wavelength present in the radiation from an X-ray machine = %6.4f nm', lambda_min/1e-009);\n", "// Result \n", "// The shortest wavelength present in the radiation from an X-ray machine = 0.0249 nm " ] } ], "metadata": { "kernelspec": { "display_name": "Scilab", "language": "scilab", "name": "scilab" }, "language_info": { "file_extension": ".sce", "help_links": [ { "text": "MetaKernel Magics", "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" } ], "mimetype": "text/x-octave", "name": "scilab", "version": "0.7.1" } }, "nbformat": 4, "nbformat_minor": 0 }