1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chapter 4: Quantum physics"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 4.10: Probability_of_finding_the_practicle.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"\n",
"\n",
"//Example No.4.10\n",
"// Page No.138.\n",
"//To find the probability.\n",
"clc;clear;\n",
"L = 25*10^(-10);//Width of the potential well -[m].\n",
"delx = 0.05*10^(-10);//Interval -[m].\n",
"x = int(1);\n",
"P = (((2*delx)/L)*x);//'P' is the probability of finding the practicle at an interval of 0.05 .\n",
"printf('\nThe probability of finding the particle is %.3f',P);"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 4.11: Lowest_energy_of_the_electron.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"\n",
"//Example No.4.11.\n",
"//Page No.138.\n",
"clc;clear;\n",
"n = 1;//For the lowest energy value n=1.\n",
"h = 6.626*10^(-34);//Planck's constant.\n",
"L = 1*10^(-10);//Width of the potential well -[m].\n",
"m = 9.1*10^(-31);//Mass of the electron.\n",
"E = ((n^(2)*h^(2))/(8*m*L^(2)));\n",
"E = ((h^(2))/(8*m*L^(2)));// For the lowest energy value n=1.\n",
"printf('\nThe lowest energy of the electron in joules is %3.3e J',E);;// Lowest energy of the electron in joules.\n",
"E = (E/(1.6*10^(-19)));\n",
"printf('\nThe lowest energy of the electron in eV is %.2f eV',E);// Lowest energy of the electron in eV.\n",
""
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 4.12: Lowest_energy_of_the_electron.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"\n",
"\n",
"//Example No.4.12.\n",
"//Page No.139.\n",
"//To find lowest energy of the electron.\n",
"clc;clear;\n",
"n = 1;//For the lowest energy value n=1.\n",
"h = 6.626*10^(-34);//Planck's constant.\n",
"L = 1*10^(-10);//Width of the potential well -[m].\n",
"m = 9.1*10^(-31);//Mass of the electron.\n",
"E = (2*(n^(2)*h^(2))/(8*m*L^(2)));\n",
"//'E' is the Lowest energy of the system.\n",
"printf('\nThe lowest energy of the system in joules is %3.3e J',E);\n",
"E = (E/(1.6*10^(-19)));\n",
"printf('\nThe lowest energy of the system in eV is %.2f eV',E);// Lowest energy of the electron in eV."
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 4.13: Lowest_energy_of_the_system.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"\n",
"\n",
"//Example No.4.13.\n",
"//Page No.139.\n",
"clc;clear;\n",
"h = 6.626*10^(-34);//Planck's constant.\n",
"L = 1*10^(-10);//Width of the potential well -[m].\n",
"m = 9.1*10^(-31);//Mass of the electron.\n",
"E = ((6*h^(2))/(8*m*L^(2)));\n",
"printf('\n 1) The lowest energy of the system in joules is %3.3e eV',E);\n",
"E = (E/(1.6*10^(-19)));\n",
"printf('\n 2) The lowest energy of the system is %.2f eV',E);\n",
"disp('3) Quantum numbers are,');\n",
"n = 1;\n",
"l = 0;\n",
"ml = 0;\n",
"ms = 0.5;\n",
"ms1 = -0.5;\n",
"printf('\ni)n = %.0f',n);\n",
"printf(' , l = %.0f',l);\n",
"printf(' , ml = %.0f',ml);\n",
"printf(' , ms = %.1f',ms);\n",
"printf('\nii)n = %.0f',n);\n",
"printf(' , l = %.0f',l);\n",
"printf(' , ml = %.0f',ml);\n",
"printf(' , ms1 = %.1f',ms1);\n",
"n=2;\n",
"printf('\niii)n = %.0f',n);\n",
"printf(' , l = %.0f',l);\n",
"printf(' , ml = %.0f',ml);\n",
"printf(' , ms = %.1f',ms);"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 4.14: mass_of_the_alpha_practical.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"\n",
"\n",
"//Example No.4.14.\n",
"//Page No.140.\n",
"//The mass of the particle.\n",
"clc;clear;\n",
"E = 0.025*1.6*10^(-19);//Lowest energy.\n",
"h = 6.626*10^(-34);//Planck's constant.\n",
"L = 100*10^(-10);//Width of the well -[m].\n",
"m = ((h^(2))/(8*E*L^(2)));\n",
"printf('\nThe mass of the particle is %3.3e kg',m);"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 4.15: Energy_density.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"\n",
"\n",
"//Example No.4.15.\n",
"//Page No.141.\n",
"//To find energy density.\n",
"clc;clear;\n",
"T = 6000;//Temperature -[K].\n",
"k = 1.38*10^(-23);//Boltzman's constant.\n",
"w1 = 450*10^(-9);//wavelength -[m].\n",
"w2 = 460*10^(-9);//wavelength -[m].\n",
"c = 3*10^(8);//Velcity of light.\n",
"v1=(c/w1);\n",
"printf('\nThe velocity for wavelength 450 nm is %3.3e Hz',v1);\n",
"v2 = (c/w2);\n",
"printf('\nThe velocity for wavelength 460 nm is %3.3e Hz',v2);\n",
"v = ((v1+v2)/2);\n",
"printf('\nThe average value of v is %3.3e Hz',v);\n",
"h = 6.626*10^(-34);//Planck's constant.\n",
"d = (8*%pi*h*v^(3))/(c^(3));\n",
"dv = d*(1/(exp((h*v)/(k*T))-1));//Energy density.\n",
"printf('\nThe energy density of the black body is %3.3e J/m^3',dv);"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 4.1: change_in_wavelength.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"\n",
"\n",
"//Example No 133.\n",
"//Page No 4.1.\n",
"//To find change in wavelength.\n",
"clc;clear;\n",
"h = 6.63*10^(-34);//Planck's constant -[J-s].\n",
"m0 = 9.1*10^(-31);//mass of electron -[kg].\n",
"c = 3*10^(8);//Velocity of ligth -[m/s].\n",
"cosq = cosd(135);//Angle of scattering -[degree].\n",
"delW = (h/(m0*c))*(1-cosq);//change in wavelength.\n",
"printf('\nThe change in wavelength is %3.3e m',delW);"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 4.2: comptom_shift_and_w_and_energy.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"\n",
"\n",
"//Example No.4.2.\n",
"//Page No.134.\n",
"clc;clear;\n",
"h = 6.626*10^(-34);//Planck's constant.\n",
"m0 = 9.1*10^(-31);//mass of electron.\n",
"c = 3*10^(8);//Velocity of ligth.\n",
"cosq = cosd(90);//Scattering angle -[degree].\n",
"delW = (h/(m0*c))*(1-cosq);//Compton's shift\n",
"delW = delW*10^(10);\n",
"printf('\na)The Comptons shift is %.5f A',delW);\n",
"w = 2;//Wavelength -[A]\n",
"W = (delW+w);// Wavelength of the scattered photon.\n",
"printf('\nb)The wavelength of the scattered photon is % 5f A',W);\n",
"E = (h*c)*((1/(w*10^(-10)))-(1/(W*10^(-10))));//Energy of the recoiling electron in joules.\n",
"printf('\nc)The energy of the recoiling electron in joules is %3.3e J',E);\n",
"E = (E/(1.6*10^(-19)));//Energy of the recoiling electron in eV.\n",
"printf('\nc)The energy of the recoiling electron in eV is %3.3e eV',E);\n",
"sinq = sind(90);\n",
"Q = (((h*c)/w)*sinq)/(((h*c)/w)-((h*c)/W)*cosq);\n",
"theta = atand(Q);\n",
"printf('\ne)The angle at which the recoiling electron appears is %.0f degree',theta); "
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 4.3: comptom_shift_and_wavelength.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"\n",
"\n",
"//Example No.4.3.\n",
"//Page NO.135.\n",
"clc;clear;\n",
"h = 6.626*10^(-34);//Planck's constant.\n",
"mo = 9.1*10^(-31);//mass of electron.\n",
"c = 3*10^(8);//Velocity of ligth.\n",
"w = (1*1.6*10^(-19)*10^(6));//wavelength.\n",
"cosq = cosd(60);\n",
"delw = ((h/(mo*c))*(1-cosq));//Compton shift\n",
"delw = delw*10^(10);\n",
"printf('\n1)The Comptons shift = %.3f A',delw);\n",
"E = ((h*c)/w);//energy of the incident photon.\n",
"W = (delw+E);//Wavelength of the scattered photon.\n",
"W = (0.012)+(1.242);\n",
"printf('\n3)The wavelength of the scattered photon = %.3f A',W);"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 4.4: Number_of_photons_emitted.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"\n",
"\n",
"//Example No 135.\n",
"//Page No 4.4.\n",
"//To find number of photons.\n",
"clc;clear;\n",
"h = 6.63*10^(-34);//Planck's constant.\n",
"c = 3*10^(8);//Velocity of ligth.\n",
"w = 5893*10^(-10);//wavelength.\n",
"Op = 60;//output power -[W].\n",
"E =((h*c)/w);\n",
"printf('\nEnergy of photon in joules is %3.3e J',E);//Energy of photon in joules.\n",
"hv = (E/(1.6*10^(-19)));//Energy of photon in eV.\n",
"printf('\nEnergy of photon in eV is %.3f eV',hv);\n",
"Ps = ((Op)/(E));\n",
"Ps = ((60)/(E));// Number of photons emitted per second.\n",
"printf('\nThe number of photons emitted per second is %3.3e photons per second',Ps);"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 4.5: Mass_and_energy.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"\n",
"\n",
"//Example No 136.\n",
"//Page No 4.5.\n",
"//To find mass,momentum & energy of photon.\n",
"clc;clear;\n",
"h = 6.63*10^(-34);//Planck's constant.\n",
"c = 3*10^(8);//Velocity of ligth.\n",
"w = 10*10^(-10);//wavelength.\n",
"E = ((h*c)/w);//Energy.\n",
"printf('\n1)The energy of photon in joules is %3.3e J',E);\n",
"E = E/(1.6*10^(-19)*10^(3));\n",
"printf('\n2)The energy of photon in eV is %.3f Kev',E);\n",
"p = (h/w);//Momentum.\n",
"p = ((6.63*10^(-34))/(10*10^(-10)));\n",
"printf('\n3)The momentum of the photon is %3.3e kg.m/s',p)\n",
"m = (h/(w*c));\n",
"printf('\n4)The mass of the photon is %3.3e kg',m);"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 4.6: DeBroglie_wavelength.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"\n",
"\n",
"//Example No 136.\n",
"//Page No 4.6.\n",
"//To find de-Broglie wavelength.\n",
"clc;clear;\n",
"V=1.25*10^(3);//Potential difference applied -[V].\n",
"w=((12.27)/sqroot(V));//de-Broglie wavelength of electron.\n",
"printf('\nThe de-Broglie wavelength of electron is %.3f A',w);"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 4.7: wavelength.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"\n",
"\n",
"//Example No.136 .\n",
"//Page No. 4.7.\n",
"//To find de-Broglie wavelength.\n",
"clc;clear;\n",
"E = 45*1.6*10^(-19);//Energy of the electron.\n",
"h = 6.63*10^(-34);//Planck's constant\n",
"m = 9.1*10^(-31);//Mass of the electron.\n",
"w = h/(sqrt(2*m*E));//de-Broglie wavelength.\n",
"printf('\nThe de-Broglie wavelength of the photon is %3.3e m',w);\n",
""
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 4.8: De_Broglie_wavelength.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"\n",
"\n",
"//Example No.4.8.\n",
"//Page No.137.\n",
"//To find de-Broglie wavelength.\n",
"clc;clear;\n",
"h=6.626*10^(-34);//Planck's constant.\n",
"v=10^(7);//Velocity of the electron -[m/s].\n",
"m=9.1*10^(-31);//Mass of the electron.\n",
"w=(h/(m*v));//de-Broglie wavelength\n",
"printf('\nThe de-Broglie wavelength is %3.3e m',w);"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 4.9: Wavelength_of_alpha_practical.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"\n",
"\n",
"//Example No 137.\n",
"//Page No 4.9.\n",
"//The de-Broglie wavelength of alpha particle.\n",
"clc;clear;\n",
"V = 1000;//Potential difference applied -[V].\n",
"h = (6.626*10^(-34));//Planck's constant -[J-s].\n",
"m = (1.67*10^(-27));//Mass of a proton -[kg].\n",
"e = (1.6*10^(-19));//charge of electron -[J].\n",
"w = h/sqrt(2*m*e*V);//de-Broglie wavelength\n",
"printf('\nThe de-Broglie wavelength of alpha particle = %3.3e m',w);"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Scilab",
"language": "scilab",
"name": "scilab"
},
"language_info": {
"file_extension": ".sce",
"help_links": [
{
"text": "MetaKernel Magics",
"url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
}
],
"mimetype": "text/x-octave",
"name": "scilab",
"version": "0.7.1"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|