diff options
author | Prashant S | 2020-04-14 10:25:32 +0530 |
---|---|---|
committer | GitHub | 2020-04-14 10:25:32 +0530 |
commit | 06b09e7d29d252fb2f5a056eeb8bd1264ff6a333 (patch) | |
tree | 2b1df110e24ff0174830d7f825f43ff1c134d1af /Engineering_Physics_by_A_Marikani/4-Quantum_physics.ipynb | |
parent | abb52650288b08a680335531742a7126ad0fb846 (diff) | |
parent | 476705d693c7122d34f9b049fa79b935405c9b49 (diff) | |
download | all-scilab-tbc-books-ipynb-master.tar.gz all-scilab-tbc-books-ipynb-master.tar.bz2 all-scilab-tbc-books-ipynb-master.zip |
Initial commit
Diffstat (limited to 'Engineering_Physics_by_A_Marikani/4-Quantum_physics.ipynb')
-rw-r--r-- | Engineering_Physics_by_A_Marikani/4-Quantum_physics.ipynb | 535 |
1 files changed, 535 insertions, 0 deletions
diff --git a/Engineering_Physics_by_A_Marikani/4-Quantum_physics.ipynb b/Engineering_Physics_by_A_Marikani/4-Quantum_physics.ipynb new file mode 100644 index 0000000..a73738c --- /dev/null +++ b/Engineering_Physics_by_A_Marikani/4-Quantum_physics.ipynb @@ -0,0 +1,535 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 4: Quantum physics" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.10: Probability_of_finding_the_practicle.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"\n", +"//Example No.4.10\n", +"// Page No.138.\n", +"//To find the probability.\n", +"clc;clear;\n", +"L = 25*10^(-10);//Width of the potential well -[m].\n", +"delx = 0.05*10^(-10);//Interval -[m].\n", +"x = int(1);\n", +"P = (((2*delx)/L)*x);//'P' is the probability of finding the practicle at an interval of 0.05 .\n", +"printf('\nThe probability of finding the particle is %.3f',P);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.11: Lowest_energy_of_the_electron.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"//Example No.4.11.\n", +"//Page No.138.\n", +"clc;clear;\n", +"n = 1;//For the lowest energy value n=1.\n", +"h = 6.626*10^(-34);//Planck's constant.\n", +"L = 1*10^(-10);//Width of the potential well -[m].\n", +"m = 9.1*10^(-31);//Mass of the electron.\n", +"E = ((n^(2)*h^(2))/(8*m*L^(2)));\n", +"E = ((h^(2))/(8*m*L^(2)));// For the lowest energy value n=1.\n", +"printf('\nThe lowest energy of the electron in joules is %3.3e J',E);;// Lowest energy of the electron in joules.\n", +"E = (E/(1.6*10^(-19)));\n", +"printf('\nThe lowest energy of the electron in eV is %.2f eV',E);// Lowest energy of the electron in eV.\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.12: Lowest_energy_of_the_electron.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"\n", +"//Example No.4.12.\n", +"//Page No.139.\n", +"//To find lowest energy of the electron.\n", +"clc;clear;\n", +"n = 1;//For the lowest energy value n=1.\n", +"h = 6.626*10^(-34);//Planck's constant.\n", +"L = 1*10^(-10);//Width of the potential well -[m].\n", +"m = 9.1*10^(-31);//Mass of the electron.\n", +"E = (2*(n^(2)*h^(2))/(8*m*L^(2)));\n", +"//'E' is the Lowest energy of the system.\n", +"printf('\nThe lowest energy of the system in joules is %3.3e J',E);\n", +"E = (E/(1.6*10^(-19)));\n", +"printf('\nThe lowest energy of the system in eV is %.2f eV',E);// Lowest energy of the electron in eV." + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.13: Lowest_energy_of_the_system.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"\n", +"//Example No.4.13.\n", +"//Page No.139.\n", +"clc;clear;\n", +"h = 6.626*10^(-34);//Planck's constant.\n", +"L = 1*10^(-10);//Width of the potential well -[m].\n", +"m = 9.1*10^(-31);//Mass of the electron.\n", +"E = ((6*h^(2))/(8*m*L^(2)));\n", +"printf('\n 1) The lowest energy of the system in joules is %3.3e eV',E);\n", +"E = (E/(1.6*10^(-19)));\n", +"printf('\n 2) The lowest energy of the system is %.2f eV',E);\n", +"disp('3) Quantum numbers are,');\n", +"n = 1;\n", +"l = 0;\n", +"ml = 0;\n", +"ms = 0.5;\n", +"ms1 = -0.5;\n", +"printf('\ni)n = %.0f',n);\n", +"printf(' , l = %.0f',l);\n", +"printf(' , ml = %.0f',ml);\n", +"printf(' , ms = %.1f',ms);\n", +"printf('\nii)n = %.0f',n);\n", +"printf(' , l = %.0f',l);\n", +"printf(' , ml = %.0f',ml);\n", +"printf(' , ms1 = %.1f',ms1);\n", +"n=2;\n", +"printf('\niii)n = %.0f',n);\n", +"printf(' , l = %.0f',l);\n", +"printf(' , ml = %.0f',ml);\n", +"printf(' , ms = %.1f',ms);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.14: mass_of_the_alpha_practical.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"\n", +"//Example No.4.14.\n", +"//Page No.140.\n", +"//The mass of the particle.\n", +"clc;clear;\n", +"E = 0.025*1.6*10^(-19);//Lowest energy.\n", +"h = 6.626*10^(-34);//Planck's constant.\n", +"L = 100*10^(-10);//Width of the well -[m].\n", +"m = ((h^(2))/(8*E*L^(2)));\n", +"printf('\nThe mass of the particle is %3.3e kg',m);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.15: Energy_density.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"\n", +"//Example No.4.15.\n", +"//Page No.141.\n", +"//To find energy density.\n", +"clc;clear;\n", +"T = 6000;//Temperature -[K].\n", +"k = 1.38*10^(-23);//Boltzman's constant.\n", +"w1 = 450*10^(-9);//wavelength -[m].\n", +"w2 = 460*10^(-9);//wavelength -[m].\n", +"c = 3*10^(8);//Velcity of light.\n", +"v1=(c/w1);\n", +"printf('\nThe velocity for wavelength 450 nm is %3.3e Hz',v1);\n", +"v2 = (c/w2);\n", +"printf('\nThe velocity for wavelength 460 nm is %3.3e Hz',v2);\n", +"v = ((v1+v2)/2);\n", +"printf('\nThe average value of v is %3.3e Hz',v);\n", +"h = 6.626*10^(-34);//Planck's constant.\n", +"d = (8*%pi*h*v^(3))/(c^(3));\n", +"dv = d*(1/(exp((h*v)/(k*T))-1));//Energy density.\n", +"printf('\nThe energy density of the black body is %3.3e J/m^3',dv);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.1: change_in_wavelength.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"\n", +"//Example No 133.\n", +"//Page No 4.1.\n", +"//To find change in wavelength.\n", +"clc;clear;\n", +"h = 6.63*10^(-34);//Planck's constant -[J-s].\n", +"m0 = 9.1*10^(-31);//mass of electron -[kg].\n", +"c = 3*10^(8);//Velocity of ligth -[m/s].\n", +"cosq = cosd(135);//Angle of scattering -[degree].\n", +"delW = (h/(m0*c))*(1-cosq);//change in wavelength.\n", +"printf('\nThe change in wavelength is %3.3e m',delW);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.2: comptom_shift_and_w_and_energy.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"\n", +"//Example No.4.2.\n", +"//Page No.134.\n", +"clc;clear;\n", +"h = 6.626*10^(-34);//Planck's constant.\n", +"m0 = 9.1*10^(-31);//mass of electron.\n", +"c = 3*10^(8);//Velocity of ligth.\n", +"cosq = cosd(90);//Scattering angle -[degree].\n", +"delW = (h/(m0*c))*(1-cosq);//Compton's shift\n", +"delW = delW*10^(10);\n", +"printf('\na)The Comptons shift is %.5f A',delW);\n", +"w = 2;//Wavelength -[A]\n", +"W = (delW+w);// Wavelength of the scattered photon.\n", +"printf('\nb)The wavelength of the scattered photon is % 5f A',W);\n", +"E = (h*c)*((1/(w*10^(-10)))-(1/(W*10^(-10))));//Energy of the recoiling electron in joules.\n", +"printf('\nc)The energy of the recoiling electron in joules is %3.3e J',E);\n", +"E = (E/(1.6*10^(-19)));//Energy of the recoiling electron in eV.\n", +"printf('\nc)The energy of the recoiling electron in eV is %3.3e eV',E);\n", +"sinq = sind(90);\n", +"Q = (((h*c)/w)*sinq)/(((h*c)/w)-((h*c)/W)*cosq);\n", +"theta = atand(Q);\n", +"printf('\ne)The angle at which the recoiling electron appears is %.0f degree',theta); " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.3: comptom_shift_and_wavelength.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"\n", +"//Example No.4.3.\n", +"//Page NO.135.\n", +"clc;clear;\n", +"h = 6.626*10^(-34);//Planck's constant.\n", +"mo = 9.1*10^(-31);//mass of electron.\n", +"c = 3*10^(8);//Velocity of ligth.\n", +"w = (1*1.6*10^(-19)*10^(6));//wavelength.\n", +"cosq = cosd(60);\n", +"delw = ((h/(mo*c))*(1-cosq));//Compton shift\n", +"delw = delw*10^(10);\n", +"printf('\n1)The Comptons shift = %.3f A',delw);\n", +"E = ((h*c)/w);//energy of the incident photon.\n", +"W = (delw+E);//Wavelength of the scattered photon.\n", +"W = (0.012)+(1.242);\n", +"printf('\n3)The wavelength of the scattered photon = %.3f A',W);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.4: Number_of_photons_emitted.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"\n", +"//Example No 135.\n", +"//Page No 4.4.\n", +"//To find number of photons.\n", +"clc;clear;\n", +"h = 6.63*10^(-34);//Planck's constant.\n", +"c = 3*10^(8);//Velocity of ligth.\n", +"w = 5893*10^(-10);//wavelength.\n", +"Op = 60;//output power -[W].\n", +"E =((h*c)/w);\n", +"printf('\nEnergy of photon in joules is %3.3e J',E);//Energy of photon in joules.\n", +"hv = (E/(1.6*10^(-19)));//Energy of photon in eV.\n", +"printf('\nEnergy of photon in eV is %.3f eV',hv);\n", +"Ps = ((Op)/(E));\n", +"Ps = ((60)/(E));// Number of photons emitted per second.\n", +"printf('\nThe number of photons emitted per second is %3.3e photons per second',Ps);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.5: Mass_and_energy.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"\n", +"//Example No 136.\n", +"//Page No 4.5.\n", +"//To find mass,momentum & energy of photon.\n", +"clc;clear;\n", +"h = 6.63*10^(-34);//Planck's constant.\n", +"c = 3*10^(8);//Velocity of ligth.\n", +"w = 10*10^(-10);//wavelength.\n", +"E = ((h*c)/w);//Energy.\n", +"printf('\n1)The energy of photon in joules is %3.3e J',E);\n", +"E = E/(1.6*10^(-19)*10^(3));\n", +"printf('\n2)The energy of photon in eV is %.3f Kev',E);\n", +"p = (h/w);//Momentum.\n", +"p = ((6.63*10^(-34))/(10*10^(-10)));\n", +"printf('\n3)The momentum of the photon is %3.3e kg.m/s',p)\n", +"m = (h/(w*c));\n", +"printf('\n4)The mass of the photon is %3.3e kg',m);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.6: DeBroglie_wavelength.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"\n", +"//Example No 136.\n", +"//Page No 4.6.\n", +"//To find de-Broglie wavelength.\n", +"clc;clear;\n", +"V=1.25*10^(3);//Potential difference applied -[V].\n", +"w=((12.27)/sqroot(V));//de-Broglie wavelength of electron.\n", +"printf('\nThe de-Broglie wavelength of electron is %.3f A',w);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.7: wavelength.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"\n", +"//Example No.136 .\n", +"//Page No. 4.7.\n", +"//To find de-Broglie wavelength.\n", +"clc;clear;\n", +"E = 45*1.6*10^(-19);//Energy of the electron.\n", +"h = 6.63*10^(-34);//Planck's constant\n", +"m = 9.1*10^(-31);//Mass of the electron.\n", +"w = h/(sqrt(2*m*E));//de-Broglie wavelength.\n", +"printf('\nThe de-Broglie wavelength of the photon is %3.3e m',w);\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.8: De_Broglie_wavelength.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"\n", +"//Example No.4.8.\n", +"//Page No.137.\n", +"//To find de-Broglie wavelength.\n", +"clc;clear;\n", +"h=6.626*10^(-34);//Planck's constant.\n", +"v=10^(7);//Velocity of the electron -[m/s].\n", +"m=9.1*10^(-31);//Mass of the electron.\n", +"w=(h/(m*v));//de-Broglie wavelength\n", +"printf('\nThe de-Broglie wavelength is %3.3e m',w);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.9: Wavelength_of_alpha_practical.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"\n", +"//Example No 137.\n", +"//Page No 4.9.\n", +"//The de-Broglie wavelength of alpha particle.\n", +"clc;clear;\n", +"V = 1000;//Potential difference applied -[V].\n", +"h = (6.626*10^(-34));//Planck's constant -[J-s].\n", +"m = (1.67*10^(-27));//Mass of a proton -[kg].\n", +"e = (1.6*10^(-19));//charge of electron -[J].\n", +"w = h/sqrt(2*m*e*V);//de-Broglie wavelength\n", +"printf('\nThe de-Broglie wavelength of alpha particle = %3.3e m',w);" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |