summaryrefslogtreecommitdiff
path: root/Engineering_Physics_by_A_Marikani/10-Magnetic_materials.ipynb
blob: b9f1c73bc77bcf203f454edca43bef127e44693f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
{
"cells": [
 {
		   "cell_type": "markdown",
	   "metadata": {},
	   "source": [
       "# Chapter 10: Magnetic materials"
	   ]
	},
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 10.1: Magnetization_and_flux_density.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"\n",
"//Example NO.10.1\n",
"//Page No.305\n",
"//To find magnetization & flux density.\n",
"clc;clear;\n",
"H = (10^6);//Magnetic field strength -[A/m].\n",
"x = (0.5*10^-5);//Magnetic suceptibility.\n",
"M = (x*H);//Magnetization.\n",
"printf('\nMagnetization of the material is %.0f A/m',M);\n",
"u0 = (4*%pi*10^-7);\n",
"B = (u0*(M+H));//Flux density.\n",
"printf('\nFlux density of the material is %.3f Wb/m^2',B);"
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 10.2: Magnetic_moment_of_nickel_atom.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"\n",
"\n",
"//Example NO.10.2\n",
"//Page No.306\n",
"clc;clear;\n",
"B = 0.65;//Saturation magnetic induction -[Wb/m^2].\n",
"p = 8906;//Density -[kg/m^3].\n",
"Mat = 58.7;//Atomic weight of Ni\n",
"A = (6.022*10^26);//Avagadro's constant.\n",
"N = ((p*A)/Mat);//Number of atoms per m^-3.\n",
"printf('\nNumber of atoms per m^-3 are %3.3e m^-3',N);\n",
"u0 = (4*%pi*10^-7);\n",
"um = (B/(N*u0));\n",
"printf('\nMagnetic moment is %3.3e ',um);\n",
"Mni = (um/(9.27*10^-24));\n",
"printf('\nMagnetic moment of nickel atom is %.2f uB',Mni);"
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 10.3: Relative_permiability.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"\n",
"//Example NO.10.3\n",
"//Page No.306\n",
"clc;clear;\n",
"H = 1800;//Magnetic field -[A/m].\n",
"F = (3*10^-5);//Magnetic flux -[Wb].\n",
"A = 0.2*10^-4;//Area of cross section -[m].\n",
"u0 = (4*%pi*10^-7);\n",
"B = (F/A);//Magnetic flux density.\n",
"printf('\nMagnetic flux density is %.1f Wb/m^2',B);\n",
"ur = (B/(u0*H));//Relative permeability.\n",
"printf('\nRelative permeability of the material is %.2f',ur);"
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 10.4: Saturation_magnetization.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"\n",
"//Example NO.10.4\n",
"//Page No.307\n",
"clc;clear;\n",
"u = 18.4;//Magnetic moment -[uB].\n",
"uB = (9.27*10^-24);\n",
"a = (0.835*10^-9);//Lattice parameter-[m].\n",
"M = (u*uB/a^3);//Magnetization.\n",
"printf('\nSaturation magnetization for Ni ferrite is %3.3e A/m',M);"
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 10.5: Magnetization_and_magnetic_flux_density.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"\n",
"//Example NO.10.5\n",
"//Page No.307\n",
"clc;clear;\n",
"H = (2*10^5);//Magnetic field strength -[A/m].\n",
"ur = 1.01;//Relative permeability.\n",
"u0 = (4*%pi*10^-7);\n",
"B = (u0*ur*H);//Magnetic flux density.\n",
"printf('\nMagnetic flux density is %.4f Wb/m^2',B);\n",
"M = ((0.2538/u0)-(H));//Magnetization\n",
"printf('\nMagnetization of the material is %.2f A/m',M);"
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 10.6: Succeptibility_and_magnetic_flux.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"\n",
"//Example NO.10.6\n",
"//Page No.307\n",
"clc;clear;\n",
"H = (500);//Magnetic field strength -[A/m].\n",
"x = (1.2);//Suceptibility.\n",
"M = (x*H);//Magnetization.\n",
"printf('\nMagnetization of the material is %.0f A/m',M);\n",
"u0 = (4*%pi*10^-7);\n",
"B = (u0*(M+H));//Magnetic flux density.\n",
"printf('\nMagnetic flux density inside the material is %3.3e Wb/m^2',B);"
   ]
   }
],
"metadata": {
		  "kernelspec": {
		   "display_name": "Scilab",
		   "language": "scilab",
		   "name": "scilab"
		  },
		  "language_info": {
		   "file_extension": ".sce",
		   "help_links": [
			{
			 "text": "MetaKernel Magics",
			 "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
			}
		   ],
		   "mimetype": "text/x-octave",
		   "name": "scilab",
		   "version": "0.7.1"
		  }
		 },
		 "nbformat": 4,
		 "nbformat_minor": 0
}