summaryrefslogtreecommitdiff
path: root/Engineering_Physics_by_A_Marikani/10-Magnetic_materials.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Engineering_Physics_by_A_Marikani/10-Magnetic_materials.ipynb')
-rw-r--r--Engineering_Physics_by_A_Marikani/10-Magnetic_materials.ipynb210
1 files changed, 210 insertions, 0 deletions
diff --git a/Engineering_Physics_by_A_Marikani/10-Magnetic_materials.ipynb b/Engineering_Physics_by_A_Marikani/10-Magnetic_materials.ipynb
new file mode 100644
index 0000000..b9f1c73
--- /dev/null
+++ b/Engineering_Physics_by_A_Marikani/10-Magnetic_materials.ipynb
@@ -0,0 +1,210 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 10: Magnetic materials"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.1: Magnetization_and_flux_density.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//Example NO.10.1\n",
+"//Page No.305\n",
+"//To find magnetization & flux density.\n",
+"clc;clear;\n",
+"H = (10^6);//Magnetic field strength -[A/m].\n",
+"x = (0.5*10^-5);//Magnetic suceptibility.\n",
+"M = (x*H);//Magnetization.\n",
+"printf('\nMagnetization of the material is %.0f A/m',M);\n",
+"u0 = (4*%pi*10^-7);\n",
+"B = (u0*(M+H));//Flux density.\n",
+"printf('\nFlux density of the material is %.3f Wb/m^2',B);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.2: Magnetic_moment_of_nickel_atom.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"\n",
+"//Example NO.10.2\n",
+"//Page No.306\n",
+"clc;clear;\n",
+"B = 0.65;//Saturation magnetic induction -[Wb/m^2].\n",
+"p = 8906;//Density -[kg/m^3].\n",
+"Mat = 58.7;//Atomic weight of Ni\n",
+"A = (6.022*10^26);//Avagadro's constant.\n",
+"N = ((p*A)/Mat);//Number of atoms per m^-3.\n",
+"printf('\nNumber of atoms per m^-3 are %3.3e m^-3',N);\n",
+"u0 = (4*%pi*10^-7);\n",
+"um = (B/(N*u0));\n",
+"printf('\nMagnetic moment is %3.3e ',um);\n",
+"Mni = (um/(9.27*10^-24));\n",
+"printf('\nMagnetic moment of nickel atom is %.2f uB',Mni);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.3: Relative_permiability.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//Example NO.10.3\n",
+"//Page No.306\n",
+"clc;clear;\n",
+"H = 1800;//Magnetic field -[A/m].\n",
+"F = (3*10^-5);//Magnetic flux -[Wb].\n",
+"A = 0.2*10^-4;//Area of cross section -[m].\n",
+"u0 = (4*%pi*10^-7);\n",
+"B = (F/A);//Magnetic flux density.\n",
+"printf('\nMagnetic flux density is %.1f Wb/m^2',B);\n",
+"ur = (B/(u0*H));//Relative permeability.\n",
+"printf('\nRelative permeability of the material is %.2f',ur);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.4: Saturation_magnetization.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//Example NO.10.4\n",
+"//Page No.307\n",
+"clc;clear;\n",
+"u = 18.4;//Magnetic moment -[uB].\n",
+"uB = (9.27*10^-24);\n",
+"a = (0.835*10^-9);//Lattice parameter-[m].\n",
+"M = (u*uB/a^3);//Magnetization.\n",
+"printf('\nSaturation magnetization for Ni ferrite is %3.3e A/m',M);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.5: Magnetization_and_magnetic_flux_density.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//Example NO.10.5\n",
+"//Page No.307\n",
+"clc;clear;\n",
+"H = (2*10^5);//Magnetic field strength -[A/m].\n",
+"ur = 1.01;//Relative permeability.\n",
+"u0 = (4*%pi*10^-7);\n",
+"B = (u0*ur*H);//Magnetic flux density.\n",
+"printf('\nMagnetic flux density is %.4f Wb/m^2',B);\n",
+"M = ((0.2538/u0)-(H));//Magnetization\n",
+"printf('\nMagnetization of the material is %.2f A/m',M);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.6: Succeptibility_and_magnetic_flux.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//Example NO.10.6\n",
+"//Page No.307\n",
+"clc;clear;\n",
+"H = (500);//Magnetic field strength -[A/m].\n",
+"x = (1.2);//Suceptibility.\n",
+"M = (x*H);//Magnetization.\n",
+"printf('\nMagnetization of the material is %.0f A/m',M);\n",
+"u0 = (4*%pi*10^-7);\n",
+"B = (u0*(M+H));//Magnetic flux density.\n",
+"printf('\nMagnetic flux density inside the material is %3.3e Wb/m^2',B);"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}