1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chapter 13: TRANSMISSION LINES AND CABLES"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 13.10_1: example_2.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc;\n",
"//page no 485\n",
"//prob no. 13.10.1\n",
"// Measurements on a 50 ohm slotted line gave\n",
"Z0=50;//measured in ohm\n",
"VSWR=2.0;\n",
"d=0.2;//distance from load to first minimum\n",
"T=(VSWR-1)/(VSWR+1);\n",
"pi=180;\n",
"Ql=pi*(4*0.2-1);\n",
"// using Euler's identity\n",
"e=cosd(Ql)+%i*sind(Ql);// expansion for e^(jQl);\n",
"a=T*e;\n",
"//Load impedance is given as\n",
"ZL=Z0*(1+a)/(1-a);\n",
"disp('ohm',real(ZL),'a) The equivalent series resistance is');\n",
"disp('ohm',imag(ZL),'The equivalent series reactance is');\n",
"disp('The minus sign indicate the capacitive reactance');\n",
"Yl=1/ZL;\n",
"disp('ohm',1/real(Yl),'b) The equivalent parallel resistance is');\n",
"disp('ohm',1/imag(Yl),'The equivalent parallel reactance is');"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 13.11_1: example_3.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc;\n",
"//page no 488\n",
"//prob no. 13.11.1\n",
"d=0.1;//length of 50ohm short-circuited line\n",
"Z0=50;//in ohm\n",
"f=500*10^6;//freq in Hz\n",
"pi=180;\n",
"Bl=2*pi*d;\n",
"//a)Determination of equivalent inductive reactance\n",
"Z=%i*Z0*tand(Bl);\n",
"disp('ohm','i',Z,'The equivalent inductive reactance is');\n",
"//b)Determination of equivalent inductance\n",
"L_eq=Z/(2*%pi*f);\n",
"disp('nH',L_eq*10^9,'The equivalent inductance is');"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 13.17_1: example_4.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc;\n",
"//page no 513\n",
"//prob no. 13.17.1\n",
"VSWR=2;l_min=0.2;Z0=50;\n",
"Ql=((4*l_min )- 1)*%pi;\n",
"tl=(VSWR-1)/(VSWR+1);\n",
"Tl=tl*%e^(%i*Ql);\n",
"Zl=Z0*(1+Tl)/(1-Tl);\n",
"disp('ohm',real(Zl),'a) The equivalent series resistance is');\n",
"disp('ohm',imag(Zl),'The equivalent series reactance is');\n",
"disp('The minus sign indicate the capacitive reactance');\n",
"Yl=1/Zl;\n",
"disp('ohm',1/real(Yl),'b) The equivalent parallel resistance is');\n",
"disp('ohm',1/imag(Yl),'The equivalent parallel reactance is');"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 13.17_2: example_5.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc;\n",
"//page no 514\n",
"//prob no. 13.17.2\n",
"// A transmission line is terminated with\n",
"ZL=30-(%i*23);\n",
"l=0.5;//// length of line in m\n",
"Z0=50;//characteristic impedance in ohm\n",
"wl=0.45;//wavelength on the line in m\n",
"B=2*%pi/wl;\n",
"Tl=(ZL-Z0)/(ZL+Z0)\n",
"VI=1;//reference voltage in volt\n",
"VR=VI*Tl;\n",
"Vi=VI*%e^(%i*B*l);\n",
"Vr=VR*%e^-(%i*B*l);\n",
"V=Vi+Vr;\n",
"I=(Vi-Vr)/Z0;\n",
"Z=V/I;\n",
"disp('ohm',Z,'The input impedance is');"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 13.17_3: example_6.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc;\n",
"//page no 515\n",
"//prob no. 13.17.3\n",
"Z0=600;Zl=73;//in ohm\n",
"F=0.9;\n",
"QF=(2*%pi*F)/4;\n",
"//For matching, the effective load impedance on the main line must equal the characteristic impedance of the mail line\n",
"Zl1=Zl;\n",
"Z01=sqrt(Zl1*Zl);\n",
"Tl=(Zl-Z01)/(Zl+Z01);\n",
"VI=1;//reference voltage\n",
"Vi=VI*%e^(%i*QF);\n",
"Vr=Tl*VI*%e^-(%i*QF);\n",
"V_in=Vi+Vr;\n",
"I_in=(Vi-Vr)/Z01;\n",
"Z_in=V_in/I_in;\n",
"disp('ohm',Z_in,'The input impedance is');\n",
"//the voltage reflection coeff is\n",
"TL_F=(Z_in-Z0)/(Z_in+Z0);\n",
"//the VSWr is given as\n",
"VSWR_F=(1+TL_F)/(1-TL_F);\n",
"disp(VSWR_F,'The VSWR is');"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 13.5_2: example_1.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc;\n",
"//page no 475\n",
"//prob no. 13.5.2\n",
"// The attenuation coeff is 0.0006 N/m\n",
"a=0.0006;//The attenuation coeff in N/m\n",
"//a)Determinaion of the attenuation coeff in dB/m\n",
"a_dB=8.686*a;\n",
"disp('dB/m',a_dB,'The attenuation coeff is');\n",
"//b) Determination of attenuation coeff in dB/mile\n",
"k=1609;//conversion coeff for meter to mile\n",
"a_dB_mile=k*a_dB;\n",
"disp('dB/mile',a_dB_mile,'The attenuation coeff is');"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Scilab",
"language": "scilab",
"name": "scilab"
},
"language_info": {
"file_extension": ".sce",
"help_links": [
{
"text": "MetaKernel Magics",
"url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
}
],
"mimetype": "text/x-octave",
"name": "scilab",
"version": "0.7.1"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|