diff options
Diffstat (limited to 'Electronic_Communication_by_D_Roddy/13-TRANSMISSION_LINES_AND_CABLES.ipynb')
-rw-r--r-- | Electronic_Communication_by_D_Roddy/13-TRANSMISSION_LINES_AND_CABLES.ipynb | 240 |
1 files changed, 240 insertions, 0 deletions
diff --git a/Electronic_Communication_by_D_Roddy/13-TRANSMISSION_LINES_AND_CABLES.ipynb b/Electronic_Communication_by_D_Roddy/13-TRANSMISSION_LINES_AND_CABLES.ipynb new file mode 100644 index 0000000..7fb9abf --- /dev/null +++ b/Electronic_Communication_by_D_Roddy/13-TRANSMISSION_LINES_AND_CABLES.ipynb @@ -0,0 +1,240 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 13: TRANSMISSION LINES AND CABLES" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.10_1: example_2.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"//page no 485\n", +"//prob no. 13.10.1\n", +"// Measurements on a 50 ohm slotted line gave\n", +"Z0=50;//measured in ohm\n", +"VSWR=2.0;\n", +"d=0.2;//distance from load to first minimum\n", +"T=(VSWR-1)/(VSWR+1);\n", +"pi=180;\n", +"Ql=pi*(4*0.2-1);\n", +"// using Euler's identity\n", +"e=cosd(Ql)+%i*sind(Ql);// expansion for e^(jQl);\n", +"a=T*e;\n", +"//Load impedance is given as\n", +"ZL=Z0*(1+a)/(1-a);\n", +"disp('ohm',real(ZL),'a) The equivalent series resistance is');\n", +"disp('ohm',imag(ZL),'The equivalent series reactance is');\n", +"disp('The minus sign indicate the capacitive reactance');\n", +"Yl=1/ZL;\n", +"disp('ohm',1/real(Yl),'b) The equivalent parallel resistance is');\n", +"disp('ohm',1/imag(Yl),'The equivalent parallel reactance is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.11_1: example_3.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"//page no 488\n", +"//prob no. 13.11.1\n", +"d=0.1;//length of 50ohm short-circuited line\n", +"Z0=50;//in ohm\n", +"f=500*10^6;//freq in Hz\n", +"pi=180;\n", +"Bl=2*pi*d;\n", +"//a)Determination of equivalent inductive reactance\n", +"Z=%i*Z0*tand(Bl);\n", +"disp('ohm','i',Z,'The equivalent inductive reactance is');\n", +"//b)Determination of equivalent inductance\n", +"L_eq=Z/(2*%pi*f);\n", +"disp('nH',L_eq*10^9,'The equivalent inductance is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.17_1: example_4.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"//page no 513\n", +"//prob no. 13.17.1\n", +"VSWR=2;l_min=0.2;Z0=50;\n", +"Ql=((4*l_min )- 1)*%pi;\n", +"tl=(VSWR-1)/(VSWR+1);\n", +"Tl=tl*%e^(%i*Ql);\n", +"Zl=Z0*(1+Tl)/(1-Tl);\n", +"disp('ohm',real(Zl),'a) The equivalent series resistance is');\n", +"disp('ohm',imag(Zl),'The equivalent series reactance is');\n", +"disp('The minus sign indicate the capacitive reactance');\n", +"Yl=1/Zl;\n", +"disp('ohm',1/real(Yl),'b) The equivalent parallel resistance is');\n", +"disp('ohm',1/imag(Yl),'The equivalent parallel reactance is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.17_2: example_5.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"//page no 514\n", +"//prob no. 13.17.2\n", +"// A transmission line is terminated with\n", +"ZL=30-(%i*23);\n", +"l=0.5;//// length of line in m\n", +"Z0=50;//characteristic impedance in ohm\n", +"wl=0.45;//wavelength on the line in m\n", +"B=2*%pi/wl;\n", +"Tl=(ZL-Z0)/(ZL+Z0)\n", +"VI=1;//reference voltage in volt\n", +"VR=VI*Tl;\n", +"Vi=VI*%e^(%i*B*l);\n", +"Vr=VR*%e^-(%i*B*l);\n", +"V=Vi+Vr;\n", +"I=(Vi-Vr)/Z0;\n", +"Z=V/I;\n", +"disp('ohm',Z,'The input impedance is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.17_3: example_6.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"//page no 515\n", +"//prob no. 13.17.3\n", +"Z0=600;Zl=73;//in ohm\n", +"F=0.9;\n", +"QF=(2*%pi*F)/4;\n", +"//For matching, the effective load impedance on the main line must equal the characteristic impedance of the mail line\n", +"Zl1=Zl;\n", +"Z01=sqrt(Zl1*Zl);\n", +"Tl=(Zl-Z01)/(Zl+Z01);\n", +"VI=1;//reference voltage\n", +"Vi=VI*%e^(%i*QF);\n", +"Vr=Tl*VI*%e^-(%i*QF);\n", +"V_in=Vi+Vr;\n", +"I_in=(Vi-Vr)/Z01;\n", +"Z_in=V_in/I_in;\n", +"disp('ohm',Z_in,'The input impedance is');\n", +"//the voltage reflection coeff is\n", +"TL_F=(Z_in-Z0)/(Z_in+Z0);\n", +"//the VSWr is given as\n", +"VSWR_F=(1+TL_F)/(1-TL_F);\n", +"disp(VSWR_F,'The VSWR is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.5_2: example_1.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"//page no 475\n", +"//prob no. 13.5.2\n", +"// The attenuation coeff is 0.0006 N/m\n", +"a=0.0006;//The attenuation coeff in N/m\n", +"//a)Determinaion of the attenuation coeff in dB/m\n", +"a_dB=8.686*a;\n", +"disp('dB/m',a_dB,'The attenuation coeff is');\n", +"//b) Determination of attenuation coeff in dB/mile\n", +"k=1609;//conversion coeff for meter to mile\n", +"a_dB_mile=k*a_dB;\n", +"disp('dB/mile',a_dB_mile,'The attenuation coeff is');" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |