1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chapter 5: Synchronous Machines in Steady State"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 5.1: Finding_unsaturated_value_of_the_synchronous_reactance_and_the_SCR_ratio.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// Caption: Finding unsaturated value of the synchronous reactance and the SCR ratio\n",
"// Example 5.1\n",
"\n",
"clear;\n",
"close;\n",
"clc;\n",
"E_af_ag=202/3^.5;//voltage to neutral on air-gap line at 2.20A\n",
"I_a_sc=118;//at 2.20A\n",
"X_s_ag=E_af_ag/I_a_sc;//Reactance per phase\n",
"disp(X_s_ag,'Reactance in ohm per phase=')\n",
"I_a_r=45000/(3^.5*220);//Rated Ia\n",
"I_a_sc=118/I_a_r;//per unit\n",
"E_af_ag=202/220;//per unit\n",
"X_s_ag=E_af_ag/I_a_sc;//per unit\n",
"disp(X_s_ag,'reactance per unit=')\n",
"X_s=220/3^.5*152;//per phase\n",
"disp(X_s,'saturated reactance per phase=')\n",
"I_a_sc_dash=152/118;//per unit\n",
"X_s=1.00/I_a_sc_dash;//per unit\n",
"SCR=2.84/2.20;\n",
"disp(SCR,'short circuit ratio=')\n",
"//Result\n",
"// Reactance in ohm per phase=0.9883454 \n",
"//reactance per unit=0.9189162 \n",
"//saturated reactance per phase=19306.593 \n",
"//short circuit ratio=1.2909091 "
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 5.2: Finding_effective_armature_resistance.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// Caption: Finding effective armature resistance\n",
"// Example 5.2\n",
"\n",
"clear;\n",
"close;\n",
"clc;\n",
"L_loss_sc=1.8/45;//per unit\n",
"I_a=1.00;//per unit\n",
"R_a_eff=L_loss_sc/I_a^2;//per unit\n",
"disp(R_a_eff,'effective armature resistance in per unit=')\n",
"R_a_eff=1800/((118^2)*3);//per phase\n",
"disp(R_a_eff,'effective armature resistance in ohms per phase=')\n",
"//Result\n",
"//effective armature resistance in per unit=0.04\n",
"//effective armature resistance in ohms per phase=0.0430911"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 5.3: EX5_3.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// Caption: Finding maximum torque deliver by motor when it is supplied with the power from a)infinite bus b)turbine generator\n",
"// Example 5.3\n",
"\n",
"clear;\n",
"close;\n",
"clc;\n",
"kVA_r=1500/3;//per phase\n",
"V_ta=2300/sqrt(3);//per phase\n",
"I_r=500000/V_ta;//per phase\n",
"X_sm=1.95;\n",
"I_a_X_sm=I_r*X_sm;//syn-reactance V-drop\n",
"E_afm=sqrt(V_ta^2+I_a_X_sm^2);\n",
"p_max=(V_ta*E_afm)/X_sm;//per phase\n",
"P_max=3*p_max;//power in 3 phase\n",
"W_s=2*%pi*4;\n",
"T_max=P_max/W_s;//torque-max\n",
"disp(T_max,'Maximum torque in newton-meteres=')\n",
"//Result\n",
"//Maximum torque in newton-meteres=123341.2\n",
"\n",
"V_ta=2300/sqrt(3);//per phase\n",
"I_r=500000/V_ta;//per phase\n",
"X_sm=1.95;X_sg=2.65;//synchronous reactance of motor ang generator\n",
"I_a_X_sg=I_r*X_sg;//syn-reactance V-drop\n",
"E_afg=sqrt(V_ta^2+I_a_X_sg^2);\n",
"p_max=(E_afg*E_afm)/(X_sm+X_sg);//per phase\n",
"P_max=3*p_max;//power in 3 phase\n",
"W_s=2*%pi*4;\n",
"T_max=P_max/W_s;//torque-max\n",
"disp(T_max,'Maximum torque in newton-meteres=')\n",
"//Result\n",
"//Maximum torque in newton-meteres=65401.933\n",
"\n",
"I_a=sqrt(E_afm^2+E_afg^2)/(X_sg+X_sm);\n",
"alpha=acos(E_afm/(I_a*(X_sg+X_sm)));\n",
"\n",
"V_ta=E_afm-I_a*X_sm*cos(alpha)+%i*I_a*X_sm*sin(alpha);\n",
"disp(V_ta,'terminal voltage=')\n",
"//Result\n",
"//terminal voltage=874.14246 + 704.12478i "
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 5.4: Finding_efficiency_of_machine.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// Caption: Finding efficiency of machine\n",
"// Example 5.4\n",
"\n",
"clear;\n",
"close;\n",
"clc;\n",
"I_a=45000/(sqrt(3)*230*.8);//armature current\n",
"R_f=29.8*((234.5+75)/(234.5+25));//field resistance at 75 degree celsius\n",
"R_a=0.0335*((234.5+75)/(234.5+25));//armature dc resistance at 75 degree celsius\n",
"I_f=5.5;\n",
"L_f=(I_f^2*R_f)/1000;//field loss\n",
"L_a=(3*I_a^2*R_a)/1000;//armature loss\n",
"V_i=230/sqrt(3)-I_a*(.8+%i*.6)*R_a;//internal voltage\n",
"L_s=.56;//stray load loss\n",
"L_c=1.2;//open circuit core loss\n",
"L_w=.91;//frictional and winding loss\n",
"L_t=L_f+L_a+L_s+L_c+L_w//total losses\n",
"Input=46.07;\n",
"Eff=1-L_t/Input;\n",
"disp(Eff*100,'efficiency of the system is(%) ')\n",
"//Result\n",
"//efficiency of the system is(%)86.683487"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Scilab",
"language": "scilab",
"name": "scilab"
},
"language_info": {
"file_extension": ".sce",
"help_links": [
{
"text": "MetaKernel Magics",
"url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
}
],
"mimetype": "text/x-octave",
"name": "scilab",
"version": "0.7.1"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|