{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 5: Synchronous Machines in Steady State" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5.1: Finding_unsaturated_value_of_the_synchronous_reactance_and_the_SCR_ratio.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Caption: Finding unsaturated value of the synchronous reactance and the SCR ratio\n", "// Example 5.1\n", "\n", "clear;\n", "close;\n", "clc;\n", "E_af_ag=202/3^.5;//voltage to neutral on air-gap line at 2.20A\n", "I_a_sc=118;//at 2.20A\n", "X_s_ag=E_af_ag/I_a_sc;//Reactance per phase\n", "disp(X_s_ag,'Reactance in ohm per phase=')\n", "I_a_r=45000/(3^.5*220);//Rated Ia\n", "I_a_sc=118/I_a_r;//per unit\n", "E_af_ag=202/220;//per unit\n", "X_s_ag=E_af_ag/I_a_sc;//per unit\n", "disp(X_s_ag,'reactance per unit=')\n", "X_s=220/3^.5*152;//per phase\n", "disp(X_s,'saturated reactance per phase=')\n", "I_a_sc_dash=152/118;//per unit\n", "X_s=1.00/I_a_sc_dash;//per unit\n", "SCR=2.84/2.20;\n", "disp(SCR,'short circuit ratio=')\n", "//Result\n", "// Reactance in ohm per phase=0.9883454 \n", "//reactance per unit=0.9189162 \n", "//saturated reactance per phase=19306.593 \n", "//short circuit ratio=1.2909091 " ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5.2: Finding_effective_armature_resistance.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Caption: Finding effective armature resistance\n", "// Example 5.2\n", "\n", "clear;\n", "close;\n", "clc;\n", "L_loss_sc=1.8/45;//per unit\n", "I_a=1.00;//per unit\n", "R_a_eff=L_loss_sc/I_a^2;//per unit\n", "disp(R_a_eff,'effective armature resistance in per unit=')\n", "R_a_eff=1800/((118^2)*3);//per phase\n", "disp(R_a_eff,'effective armature resistance in ohms per phase=')\n", "//Result\n", "//effective armature resistance in per unit=0.04\n", "//effective armature resistance in ohms per phase=0.0430911" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5.3: EX5_3.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Caption: Finding maximum torque deliver by motor when it is supplied with the power from a)infinite bus b)turbine generator\n", "// Example 5.3\n", "\n", "clear;\n", "close;\n", "clc;\n", "kVA_r=1500/3;//per phase\n", "V_ta=2300/sqrt(3);//per phase\n", "I_r=500000/V_ta;//per phase\n", "X_sm=1.95;\n", "I_a_X_sm=I_r*X_sm;//syn-reactance V-drop\n", "E_afm=sqrt(V_ta^2+I_a_X_sm^2);\n", "p_max=(V_ta*E_afm)/X_sm;//per phase\n", "P_max=3*p_max;//power in 3 phase\n", "W_s=2*%pi*4;\n", "T_max=P_max/W_s;//torque-max\n", "disp(T_max,'Maximum torque in newton-meteres=')\n", "//Result\n", "//Maximum torque in newton-meteres=123341.2\n", "\n", "V_ta=2300/sqrt(3);//per phase\n", "I_r=500000/V_ta;//per phase\n", "X_sm=1.95;X_sg=2.65;//synchronous reactance of motor ang generator\n", "I_a_X_sg=I_r*X_sg;//syn-reactance V-drop\n", "E_afg=sqrt(V_ta^2+I_a_X_sg^2);\n", "p_max=(E_afg*E_afm)/(X_sm+X_sg);//per phase\n", "P_max=3*p_max;//power in 3 phase\n", "W_s=2*%pi*4;\n", "T_max=P_max/W_s;//torque-max\n", "disp(T_max,'Maximum torque in newton-meteres=')\n", "//Result\n", "//Maximum torque in newton-meteres=65401.933\n", "\n", "I_a=sqrt(E_afm^2+E_afg^2)/(X_sg+X_sm);\n", "alpha=acos(E_afm/(I_a*(X_sg+X_sm)));\n", "\n", "V_ta=E_afm-I_a*X_sm*cos(alpha)+%i*I_a*X_sm*sin(alpha);\n", "disp(V_ta,'terminal voltage=')\n", "//Result\n", "//terminal voltage=874.14246 + 704.12478i " ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5.4: Finding_efficiency_of_machine.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Caption: Finding efficiency of machine\n", "// Example 5.4\n", "\n", "clear;\n", "close;\n", "clc;\n", "I_a=45000/(sqrt(3)*230*.8);//armature current\n", "R_f=29.8*((234.5+75)/(234.5+25));//field resistance at 75 degree celsius\n", "R_a=0.0335*((234.5+75)/(234.5+25));//armature dc resistance at 75 degree celsius\n", "I_f=5.5;\n", "L_f=(I_f^2*R_f)/1000;//field loss\n", "L_a=(3*I_a^2*R_a)/1000;//armature loss\n", "V_i=230/sqrt(3)-I_a*(.8+%i*.6)*R_a;//internal voltage\n", "L_s=.56;//stray load loss\n", "L_c=1.2;//open circuit core loss\n", "L_w=.91;//frictional and winding loss\n", "L_t=L_f+L_a+L_s+L_c+L_w//total losses\n", "Input=46.07;\n", "Eff=1-L_t/Input;\n", "disp(Eff*100,'efficiency of the system is(%) ')\n", "//Result\n", "//efficiency of the system is(%)86.683487" ] } ], "metadata": { "kernelspec": { "display_name": "Scilab", "language": "scilab", "name": "scilab" }, "language_info": { "file_extension": ".sce", "help_links": [ { "text": "MetaKernel Magics", "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" } ], "mimetype": "text/x-octave", "name": "scilab", "version": "0.7.1" } }, "nbformat": 4, "nbformat_minor": 0 }